Isabel PRAUSE ^a Jean-Christophe.FAUROUX@ifma.fr ^b Mathias HÜSING ^a Burkhard CORVES ^a

IGM

Using Geometry Sketchers & CAD Tools for Mechanism Synthesis

The 14th IFToMM World Congress

Synthesis into the design process

Geometric tools for synthesis

PRAUSE Isabel FAUROUX Jean-Christophe HÜSING Mathias CORVES Burkhard

Existing software for mechanism design

- Boundary representation (B-Rep)
- Parametrized models
- Variational models (constraint based)

Geometric tools for synthesis

- Assembly

CAD

(Computer

Aided Design)

- Kinematics
- Milling (3 and 5 axes)
- Sheet metal
- Cable harness
- Virtual reality

Examples of CAD software for SMEs Solidworks www.solidworks.fr SolidEdge www.plmautomation.siemens.com Think3 www.think3.eu

> Examples of CAD software for big groups Catia www.3ds.com/fr/produits-et-services/catia Creo www.ptc.com/product/creo Inventor www.autodesk.fr/products/inventor NX www.plm.automation.siemens.com/fr_fr/products/nx

PRAUSE Isabel FAUROUX Jean-Christophe HÜSING Mathias CORVES Burkhard

Geometric tools for synthesis

PRAUSE Isabel FAUROUX Jean-Christophe HÜSING Mathias CORVES Burkhard

Existing software for machine design

Multibody simulation

- Rigid bodies, Joints
- Kinematics & dynamics
- Iterative solving of dynamics differential equation
- Parametrizing, Optimization
- Flexible bodies \rightarrow Extension to FEM

Examples of multibody software

Adamswww.mscsoftware.com/fr/product/adams

LMS Virtual Lab Motion www.plm.automation.siemens.com/fr_fr/products/lms/virtual -lab/motion/index.shtml

Simpack www.simpack.com

Open Dynamic Engine www.ode.org

Gazebo http://gazebosim.org

MSC Adams 2015 Commercial

The 14th IFToMM World Congress

Interactive Geometry Software (IGS)

Main functions

Geometric tools for synthesis

•	Tools for design					
Т						
F	Design proc.					
⊢	• CAD					
	6, (B					
┢	• IGS					
•	Synthesis					
Т						
•	Applications					
T						
0	Conclusion					

PRAUSE Isabel FAUROUX Jean-Christophe HÜSING Mathias CORVES Burkhard

- Sketching in 2D/3D as with a ruler and compass
- Parametrization
- Simple constraints (point on curve) but not really variational

Designing with mechanism skeletons

- Mechanism skeleton: simplified product representation for synthesis at a higher lever of abstraction
- Skeleton in CAD: group of reference geometrical entities (points, lines, planes) required to reconstruct a shape by a selfcoherent process
- Using a skeleton minimizes reconstruction problems due to referencing features that do not exist any more within the current set of parameters.

IGS vs. Paper work

- Precision
- Parametrization for a posteriori modification
- Sequential process that can be replayed

The 14th IFToMM World Congress 0.0

Geometric

tools for

synthesis

Tools for design

Synthesis

3 position

Applications

Conclusion

Dead Center

• Roberts-Cheb.

Synthesis 1: Three position synthesis (1/2)

Notations

- A_0 : rot. point of the crank (frame joint)

[Mallik 94]

[McCarthy11]

[Uicker 11]

- B₀: rot. point of the rocker (frame joint)
- A: coupling joint crank-coupler
- B: coupling joint coupler-rocker

Problem setting

- Given $A_0^{}$ and $B_0^{}$
 - Given 3 poses of the coupler...
 - ... Find A and B positions

Algorithm

- $A_{0,3}^{1} = A_{0}$ transferred from pose 3 to 1 - $A_{0,2}^{1} = A_{0}$ transferred from pose 2 to 1 - $A_{4}^{1} = intersection$ (
 - (right_bisector $(A_{0,2}^1, A_{0,3}^1)$, (right_bisector $(A_{0,2}^1, A_0)$)
- B¹_{0.3} = B₀ *transferred* from pose 3 to 1
- $B_{0,2}^1$ = B_0 transferred from pose 2 to 1
- $-B_1 = intersection ($
 - (right_bisector ($B_{0,2}^1$, $B_{0,3}^1$), (right_bisector ($B_{0,2}^1$, B_0))

The 14th IFToMM World Congress Date : Oct. 25-30, 2015 / Venue: Taipei International Convention Center, Taiwan

Synthesis 1: Three position synthesis (2/2)

Transferring a point

Geometric tools for synthesis

to the relative position of P in frame j - Manually, can be performed with transparent paper

- Pⁱ_i: point that has a relative position in frame i identical

- With an IGS, similar to a sub-routine

- Sub-routine 1 is less robust because the intersection of two circles gives two points \rightarrow branching

PRAUSE Isabel FAUROUX Jean-Christophe HÜSING Mathias CORVES Burkhard

Synthesis 2: Dead center position synthesis

Notations

Geometric tools for synthesis

PRAUSE Isabel FAUROUX Jean-Christophe HÜSING Mathias CORVES Burkhard

0.0

- A_i / A_a: joint A in the inner / outer dead-center position
 B_i / B_a: joint B in the inner/outer dead-center position (dead-ends of transl. stroke)
- $-\mathbf{k}_{A0}$: circle on which A_0 is located, of center M_{A0}
 - k_{A0} : circle on which A_a is located, of center M_{A0}
 - ϕ_{H}^{a} : $A_{B}^{a} A_{0}^{a} A_{i}^{b}$, angle centered in A_{0}^{b} and oriented from A_{a}^{b} to $A_{i}^{b}, \overline{\phi}_{H}^{b} = \pi \phi_{H}^{b}$
 - ψ : $AB_a B_0 B_i$, swinging angle centered in B_0 and oriented from B_a to B_i
 - e: eccentricity

Geometric tools for synthesis

Tools for design Synthesis 3 position Dead Center · Roberts-Cheb. Applications Conclusion

PRAUSE Isabel FAUROUX Jean-Christophe **HÜSING Mathias CORVES Burkhard**

0.0

Synthesis 2: Dead center position synthesis

Constructing circle K

- line $(\Delta_{1/2}) = right_bisector (B_i, B_a)$
- line $(\Delta_{AO}) = angular_line$ (angle φ_{H} , point B₂, y-axis)
- point M_{A0} = intersection (($\Delta_{1/2}$), (Δ_{A0}))
- circle $k_{AO} = circle$ (center M_{AO} , radius $M_{AO}B_a$)

Constructing circle K

- line $(\Delta_{1/4})$ = right_bisector (B_m, B_a) - line (Δ_{A_2}) = angular_line $(\phi_{\mu}/2, \text{ point } B_2, \text{ y-axis })$
- circle $k_{Aa} = circle$ (center M_{Aa} , radius $M_{Aa}B_{a}$)

- Constructing frame axes
- x-axis = half-line starting in B_a, directed by B_a B_i
- y-axis = angular_line (90°, point B_a, x-axis)

Application 1: Synthesis of a planar windscreen wiper mechanism with IGS

Problem specifications

CORVES Burkhard

Date : Oct. 25-30, 2015 / Venue: Taipei International Convention Center, Taiwan

CORVES Burkhard

Application 1: Synthesis of a planar windscreen wiper mechanism with IGS

3 position synthesis of the 4-bar motion-replication mechanism

Application 2: Synthesis of spherical mechanisms

PRAUSE Isabel FAUROUX Jean-Christophe HÜSING Mathias CORVES Burkhard

Dimensional synthesis with an IGS

Geometric tools for synthesis

PRAUSE Isabel FAUROUX Jean-Christophe HÜSING Mathias CORVES Burkhard

Geogebra vs. Cinderella

- Overall, both can do the job
- Geogebra has simpler ergonomics for
 - Parametrization
 - Angle transfer
 - Perpendicular bisector

- Other advantages of Geogebra
 - Free labeling of elements
 - Algebraic display (eq., coord.)
 - Fade out of construction elements
 - Pan-zoom

The 14th IFToMM World Congress

Dimensional synthesis with a CAD software

Catia vs. Inventor

- Procedure with Catia V5

Inventor

- Application 1 was reproduced both with Catia V5 and

3 poses = 3 reference planes

measures in other parts

references

- Overall, Catia V5 is less intuitive than the IGSs and

- Inventor has advantages over Catia V5 for synthesis:

Creation or points/lines/planes refs in

Constraint « Has the same length as »

No time-consuming « publishing » concept

The designer must:

less tolerant with respect to mistakes

assembly mode

Define a skeleton part in assembly mode

Each construction requires a new part

anticipate synthesis **steps**

choose what will be published

choose the correct inter-part

Publication required for using length

Geometric tools for synthesis

H	• IGS1 vs. IGS2
H	• IGS vs. CAD

Conclusion

PRAUSE Isabel FAUROUX Jean-Christophe HÜSING Mathias CORVES Burkhard

The 14th IFToMM World Congress

Date : Oct. 25-30, 2015 / Venue: Taipei International Convention Center, Taiwan

18

Geometric tools for synthesis

Tools for design

Synthesis

Conclusion

• IGS1 vs. IGS2

• IGS vs. CAD

Conclusion

Tool comparison

- Mechanism dimensional synthesis was performed with several CAD and IGS tools
- IGS tools prove to be **more time efficient** than CAD software
 - They help to concentrate on the skeleton only
- Geogebra **requires less operations** than Cinderella for the same task

	Parametrize	Transfer angles	Transfer lengths	Draw perpen- dicular bisectors	Find rotating point (position synthesis)
Cinderella©	4	8	1	7	2
GeoGebra©	1	1 (2)	1	3	2

Towards better tools for synthesis

- CAD software should take inspiration from IGS for dimensional synthesis

Conclusion

- Towards new CAD tools that integrate in the same model:
 - Specifications
 - A mechanism skeleton obtained by dimensional synthesis
 - A 3D model parametrized by the skeleton

PRAUSE Isabel FAUROUX Jean-Christophe HÜSING Mathias CORVES Burkhard

The 14th IFToMM World Congress