

Nicolas PERRIGUEY Zine Elabidine CHEBAB Jean-Christophe.FAUROUX@ifma.fr

ECOMEF Project Eco-design of a mechanized equipment for hardwood harvesting

Harvesting Machine for crooked trees

5th Forest Engineering Conference, September 23-26, 2014, Gerardmer, France

FUI ECOMEF project: Partners and Funders

Global Budget

Project partners

Machine for Crooked trees

- ISI (SME, project leader)

Harvesting

Partners

Presentation

Objectives

Delimbing

Conclusion

- IFMA / Pascal Institute
- IRSTEA (ex CEMAGREF)
- France Bois Régions (Auvergne Promobois, Interbois Périgord)
- Comptoir des Bois de Brive (France)
- Lycée Claude Mercier
- Accredited by Viameca et Xylofutur clusters

Funders

- FUI French Government
- Auvergne, Limousin and Aquitaine regions
- FEDER Auvergne
- FEDER Limousin
- Clermont Communauté
- General Council of Puy de Dôme
- General Council of Allier
- Brive conurbation

- FUI ECOMEF
 - **Partners**
 - Presentation
 - Objectives
- Delimbing
- Conclusion

ECOMEF project at IFMA and Pascal Institute

IFMA: French Institute for Advanced Mechanics

http://www.ifma.fr

- A prestigious **public engineering school** since 1991, part of «Grandes

Ecoles» system

- 608 engineer students and 42 engineers by apprenticeship
- 2387 graduated eng. since 1991
- **115 staff**, including 30 academic researchers
- 3 poles: structures, machines industrialisation
- 1 Technology Transfer Center
- Favoured relationship with industry

http://ip.univ-bpclermont.fr

Pascal Institute

- UMR CNRS/UBP/IFMA 6602 created in January 2012
- Sciences of engineering and systems
- 130 researchers / 27 engineers and technicians / **115 PhD students**
- Axis Mechanics, Materials and Structures (MMS)
 - Machines, Mechanisms et Industrials Systems (MMSI)
 - Mechanisms and robots synthesis
 - Behaviour modelling of complex systems in real conditions

- FUI ECOMEF
 - Partners
 - Presentation
 - Objectives
- Delimbing
- Conclusion

Project FUI ECOMEF (2011-2015)

Presentation

 FUI: a pre-competitive project aimed at developing industrials products

Eco-design of a mechanized equipmen for hardwood harvesting

Problem

- Think up innovative concepts and products for mechanized / robotized hardwood harvesting
- Current equipments are not suitable for hardwood
- Lumberjack: a dangerous job with poor job prospects
- French forest is growing being underexploited

- Energy wood

- Timber

A team for research and development

- 2,5 FTE jobs of engineers at IFMA
- 2 PhD thesis (innovative design / modelling and simulation)
- One full-scale demonstrator
- Several mono-functional demonstrators
- A Knowledge Database of hundreds innovating concepts
- Many expected patents

Project objectives

1. Designing machines that fit brodleaved tree structure

Conifer: linear trunk & fragile branches easy to cut by shock

Broadleaved trees: crooked, numerous strong branches, hardwood

Conifer harvesting machines used onto hardwood:

Breaking risks

2. Increasing productivity

Conifer : Fir
Time : 1 min 38 sec
9 short-logs + 2 logs
Processed volume : 2,3 m3
Quality : good

Hardwood : Beech
Time : 2 min 14 sec
15 short-logs
Processed volume : 1,1 m3
Quality : poor

Our Goal: design better harvesting machines to increase productivity of mechanized harvesting heads by 40% on hardwood trees

Harvesting

Machine for

Crooked trees

• FUI ECOMEF

Partners

Presentation

Objectives

Delimbing

Conclusion

- Partners
- Presentation
- Objectives
- Delimbing
- Conclusion

Project Technical Objectives

Theme 1: Harvesting Machines for crooked trees

Existing harvesters are designed for rectilinear trunks: crooked trees have to be managed in several stages

Our goal: feeding crooked trees without stopping or damaging the head

Theme 2: Delimbing optimization on hardwood

Today, hardwood big branches require to be managed separately by the driver:

- Letting the trunk down
- Catching the branch
- Sawing the branch as a trunk

Our goal: delimbing without stopping or damaging the head

Harvesting

Machine for

Primary modeling of the system

Measuring on a real harvesting head

- In association with a lumberjack
- Sensor integration
- Experimental results
- FUI ECOMEF
 Engineering
 Context
 Modeling
 Demonstrator
 Tests

 Conclusion

Engineering

FUI ECOMEF

Modeling

Context

- Demonstrator
- Tests
- Conclusion

Primary modeling of the system

Computer modeling

- 3D CAD software : CATIA
- Multibody dynamics simulation : Adams ; Video_8

Problems related to numerical models

- Difficulty of modeling the contacts
- Lack of informations
- Possible solution:

Small scale demonstrator

Why a small scale demonstrator?

- Faster design time
- Reduced cost of development
- Simpler system than full scale demonstrator

Scale effect consideration

- Use of dimensionless numbers
 - Eg : Reynolds, Blake, ...
- Difficulty to find suitable scaling laws
 - Numerous parameters
 - Actuators technology

Considered scale

1/4 geometric scale

- Engineering
 - Context
 - Modeling
 - Demonstrator
 - Tests
- Conclusion

Small scale demonstrator

Purpose

- Reproduce the **feeding action** on a reduced scale
- Study of the influence of different configurations
- Find the set of parameters allowing curved trunks passage

Harvesting Machine for Crooked trees

FUI ECOMEF

- Engineering
 - Context
 - Modeling
 - Demonstrato
 - Tests
- Conclusion

Used equipments

Harvesting Machine for Crooked trees

FUI ECOMEF

- Context
- Modeling

Demonstrator

Tests

Conclusion

First campaign

- Debugging the demonstrator
- Dimensioning the actuators
- Find **limits** of the demonstrator

Second campaign

- Trunk feeding
 - Main influential parameters
- Effect of guidance length
 - Trunk behaviour
 - Conditions for correct passage of curved trunk
- Final correct set of parameters

First campaign

- Motor power : Video_13.1
 - Changing actuators

Perriguey / Chebab / Fauroux IFMA / Institut Pascal

5th Forest Engineering Conference, Gerardmer, 2014 September 23-26

First campaign

Harvesting
Machine for
Crooked trees

- Rubber cover :
 - Traces on the rubber
 - Difficulty of the feeding; Video_13.2

- FUI ECOMEF
 Engineering
 Context
 - Modeling
 - Demonstrator
 - Tests
- Conclusion

First campaign

- FUI ECOMEF
- Engineering
- Context
 - Modeling
 - Demonstrator
 - Tests
- Conclusion

- Results of the tests :
 - Adjust actuators:
 - Change the motors type
 - Doubling linear actuators
 - Modify the architecture of the demonstrator
 - Placement of motors and linear actuators
 - Perceive the **limits** of demonstrator:
 - Speed and power of actuators
 - Similarities with the reality
 - Select relevant **real conditions**:
 - Remove the rubber covering

Crooked trees

FUI ECOMEF

Engineering

Context

Modeling

Tests

Conclusion

Demonstrator

Tests campaigns

Second campaign

Harvesting Machine for CAD

Complete small scale demonstrator

Real

NXT Automaton

Second campaign

- Complete small scale demonstrator
 - CAD
 - Real
- Design of experiment:

```
For an initial configuration of the demonstrator, do

For a specified experimental trunk, do

For a specified openings of rollers and/or knives, do

For a guidance length of the demonstrator, do

Feed the trunk;

End For;

End For;

End For;
```

Harvesting Machine for Crooked trees

```
• FUI ECOMEF
```

```
• Engineering
```

Context

Modeling

Demonstrator

Tests

Conclusion

Second campaign

Tests on the effect of the guidance length:

Time (s)

Harvesting

Machine for

Crooked trees

FUI ECOMEF

Engineering

Context

Modeling

Tests

Conclusion

Demonstrator

5th Forest Engineering Conference, Gerardmer, 2014 September 23-26

Guidance length = 188 mm

Second campaign

Test on the ability of passing curves:

- Horizontal curves :
 - Example : Video 17.1
 - » Fixed head, with support
 - » Guidance length = 116 mm
 - » Rollers openings = 77 mm
 - » Knives openings = 46 mm
- Vertical curves :
 - Examples: Video_17.3, Video_17.2
 - » Fixed head, with support
 - » Guidance length = 50 mm, 116 mm
 - » Rollers openings = 71 mm, 77 mm
 - » Knives openings = 43 mm, 46 mm

Engineering

FUI ECOMEF

- Context
 - Modeling
 - Demonstrator
 - Tests
- Conclusion

Tests campaigns

Second campaign

- Results of the tests :
 - Most relevant parameters on feeding
 - Rollers openings
 - Guidance length
 - Passing horizontal curves
 - Possible with different configurations
 - Confirmation of professional observations
 - Guidance length effects
 - Medium length is better for straight trunks
 - Small length tend to help passing curved trunks
 - Passing vertical curves
 - Caused damage to the test materials
 - Impossible with current architectures

Conclusion

- Existing head do not work
- New harvesting heads architectures

- FUI ECOMEF
- Engineering
- Conclusion

Theme 1: Conclusion

Realised work

- Small scale demonstrator
- Tests campaign allowing better comprehension of real harvesting heads.
- Main parameters:
 - Guidance length
 - Roller opening
 - Curvature orientation

Difficulties

- Scale effect
- Boundary conditions

Results and future work

- Optimal parameters were found
- Existing heads cannot fit vertical curvature
- New head architectures
- Several patents pending

- FUI ECOMEF
- Engineering
- Conclusion

FUI ECOMEF - Synthesis

Engineering

- A team of researchers, engineers & students of IFMA-IRSTEA-FCBA-ISI
- ...In association with wood professionnals
- Eco-design of one full scale demonstrator
- 4 mono-functional demonstrators (test benches)
- A goal : +40% productivity during hardwood exploitation

Research

- Thesis 1 : **innovation methodology** allowing generation and traçability of innovating concepts
- Thesis 2: two experimentaly validated models for feeding and cutting

Results with social impact

- Several pending patents
- Sustainable development of wood ressource
- Decreasing head **energy consumption**
- R&D to design future harvesting machines for a SME of Auvergne (ISI)
- Developing the wood sector in Auvergne, France and abroad

Thank you for your attention

Feel free to ask your questions