Modular Cooperative Mobile Robots for Ventral Long Payload Transport and Obstacle Crossing

Mohamed.KRID@ifma.fr
Jean-Christophe.FAUROUX@ifma.fr
Belhassen-Chedli.BOUZGARROU@ifma.fr
Introduction to the C³Bots project

C³Bots = Collaborative Cross & Carry Mobile RoBots

C³Bots = Collaborative Cross & Carry Mobile RoBots

General goal

- Design of a mechatronic system achieving the tasks with **minimal DoF** (→ simplicity)
- Static and dynamic models to maximize the poly-robot **margin of stability**
- **Perception** and **control** to guaranty efficient connections mono-robot/mono-robot and poly-robot/payload
- Optimal **reconfiguration** of the mono-robots for the task (number, poses, cooperation strategies)

Scientific topics

- **Modularity**: Several mono-robots that combine into a single poly-robot
- **Reconfigurability**
- Unstructured environments
- **Obstacle** crossing
- **Stability**
- **Manipulation and transport**
- **Payloads of any mass & shape**
- **Removal man task**

Krid / Fauroux / Bouzgarrou
IFMA / Institut Pascal

EUCOMES 2014, 5th European Conference on Mechanism Science
The C3Bots project – Examples of tasks

C3Bots = Collaborative Cross & Carry Mobile RoBots

Object transport on smooth ground
Object transport with several operators
Industrial logistics with several carts on flat ground

Co-transport of stretchers on irregular ground
Co-transport of a rigid long object on a flat ground

Obstacle crossing with heavy payload
Co-manipulation and transport with two operators
Bio-inspired co-manipulation

Co-manipulation of a heavy payload on flat ground
Co-manipulation of a heavy payload with obstacle crossing
Co-manipulation of compliant bars on a flat but unstructured environment (building area)

The C3BOTS poly-robot
Collaborative Cross and Carry mobile RoBOTS

Krid / Fauroux / Bouzgarrou
IFMA / Institut Pascal

EUROMES 2014, 5th European Conference on Mechanism Science
C³Bots project: two general architectures

C³Bots DGP
Dorsal General Payload

- PHD of Bassem HICHRI
- Structured terrain (for the moment)
- Payload of any shape
- Dorsal storage
- Described in a separate paper at EUCOMES 2014

C³Bots AT VLP
All-Terrain Ventral Long Payload

- Post-Doctoral period of of Mohamed KRID
- Described in this paper
- Heavy long payloads should be stored lower → ventral storage, between axle wheels
- Which kinematic chain to connect the payload to the mono-robots?
Existing devices: mobile robots

Robots that carry objects

C³Bots = Collaborative Cross & Carry Mobile RoBots

- Introduction
- Devices
- OpenWHEEL

Kinematics

Locomotion

Conclusion

Mars rover pair cooperatively transporting a long payload [1]

Existing devices: mobile robots

C³Bots = Collaborative Cross & Carry Mobile RoBots

- Introduction
- Devices
- OpenWHEEL

Kinematics
Locomotion
Conclusion

Collaborative robots

Army-Ant: object lifting on robot bodies [3]

Swarmanoid [5]

Obstacle crossing and leg-wheel hybrid locomotion

Shrimp [6]
6 wheels on 2 // bogies and 1 front linkage
Deformable adaptative frame. Low actuation

Azimut [7]
Four orientable tracks can be used as legs
Existing devices: specialized transport

Transporting long payloads

Several patents for long payload transport (giant windmill blades)

Telescopic vehicle and process for transporting a long payload [EP2328795B1]
- Truck + rear trailer connected by an extensible beam
- Reconfigurable according to payload length

Vehicle for transporting over-dimensioned payloads [EP1465789B1]
- Payload used as a part of the transporting system
- Low attachment to the trailer + blade orientation
→ reconfiguration for obstacle overcoming (tunnels)
C³Bots = Collaborative Cross & Carry Mobile RoBots

Requirements
- Only 4 wheels for stable obstacle crossing
- Minimal actuation

Kinematics
- Each wheel can cross the obstacle: \(T_x + T_z \)
- Kinematical conciseness: each joint has multiple uses
 - \(R_0 \): \(T_z \) lift of the 4 wheels + fitting irregular ground
 - \(R_1 \) & \(R_2 \): steering + \(\approx T_x \) + stabilization

- A complete stable climbing process in 19 stages

Krid / Fauroux / Bouzgarrou
IFMA / Institut Pascal

EUCOMES 2014, 5th European Conference on Mechanism Science
OpenWHEEL i3R

Locomotion mode in 19 stages

C³Bots = Collaborative Cross & Carry Mobile RoBots

C³Bots

- Introduction
- Devices
- OpenWHEEL

Kinematics

Locomotion

Conclusion

Video

Krid / Fauroux / Bouzgarrou
IFMA / Institut Pascal

EUCOMES 2014, 5th European Conference on Mechanism Science
Design Requirements from OpenWHEEL i3R

Requirement R1 = Adding modularity to OpenWHEEL i3R

- C³Bots = Collaborative Cross & Carry Mobile RoBots
- Poly-robot = Mono-robot 2 + Mono-robot 1

Requirement R2 = Including the payload into the poly-robot

- Unknown kinematic chains
 - Find the unknown mechanisms \(M_a \) from the mono-robot \(MR_a \) with \(a = 1 \ldots m \)
 - Kinematical conciseness

- Design req.
- Mobilities
- Kin. Solution
Required mobilities

Requirement R3

Stability condition

- Steering axle a+1 stabilizes the robot when axle a crosses the obstacle → **steering mobility** R_z required for MR_a

- Obstacle crossing → Frame tilting → Projected centre of mass G' goes to the rear $P_2G' = b \cos(\theta)/2 - h_l h_s/b$

→ the rear axle has difficulties to cross → required **mobility** T_x of G

- A poly-robot with a long aspect-ratio cannot stabilize itself during wheel-crossing only with steering → the mobility T_x of G can be achieved with a **mobility** T_x on every MR_a
Required mobilities

Requirement R4: Payload elevation

- The poly-robot should catch the payload on the ground and elevate it under its wheels
 \[T_z \text{ elevation translation} \]
 of gripper with respect to mono-robot

Summary of required mobilities

Mobilities of the gripper with respect to the frame of each mono-robot

- \(T_x \) for **enhanced stabilization** (R3)
- \(R_x \) for **wheel elevation** during obstacle crossing & **focusing irregular grounds**
- \(T_z \) for **payload elevation**
- \(R_z \) for **steering & OpenWHEEL-like stabilization** (R3)
Kinematics of the mono-robot

A feasible solution with T_x generated by rollers

$C^3Bots =$
- Collaborative
- Cross & Carry
- Mobile RoBots

C^3Bots

$Kinematics$
- Design req.
- Mobilities
- Kin. Solution

$Locomotion$

$Conclusion$

mono-Robot a

Slider S_a
- Cylindrical joint C_a

Revolute joint R_{a4}

Axle frame F_a

Gripper finger G_{a1}

Roller R_{a1}

Right wheel

Wheel W_{a1}

Wheel W_{a2}

Gripper mechanism

Axle sub-mechanism

Positioning mechanism

Payload

Contact 1

Contact 2

GW_a

P_a

R_{a3}

S_1

S_2

A

R_{a1}

R_{a2}

R_{a3}

R_{a4}

R_{a5}

R_{a6}
Kinematics of the mono-robot

Alternatives

- Equivalent joint combinations to generate the 4 mobilities T_x, R_x, T_z, R_z
- Parallel mechanisms could also be used
Kinematics of the poly-robot

Case of 2 Mono-Robots

- Redundancy of the two R_x mobilities can be used for lateral balancing of the payload
C³Bots = Collaborative Cross & Carry Mobile RoBots

- Obstacle-crossing is easy with three axles and more
- Plane motion of parts in plane XZ
3+ axles: 2D crossing mode

C³Bots = Collaborative Cross & Carry Mobile RoBots

- C³Bots
- Kinematics
- Locomotion
 - 3+ axles
 - 2 axles
- Conclusion

Krid / Fauroux / Bouzgarrou
IFMA / Institut Pascal
2 axles: 3D serpentine crossing mode

- Inspired form OpenWHEEL i3R locomotion mode
- 20 stages or manoeuvres
- 4 phases (one per wheel) and intermediate manoeuvres
- Obstacle crossing of wheel \(W_{as} \) (\(a=\)axle number, \(s=\)side number) takes 4 manoeuvres
 - Manoeuvre \(M_{01} \): Stabilization (motion of axles other than \(a \))
 - Manoeuvre \(M_{02} \): \(W_{as} \) elevation \(T_{z^+} \)
 - Manoeuvre \(M_{02} \): \(W_{as} \) progression \(T_x \)
 - Manoeuvre \(M_{03} \): \(W_{as} \) landing \(T_z^- \)
Poly-robot Preparation

2 axles: 3D serpentine crossing mode
Stage 00
2 axles: 3D serpentine crossing mode
Stage 01

Poly-robot
Touching obstacle
2 axles: 3D serpentine crossing mode
Stage 02 - PW$_{11}$M$_{01}$

W_{11} stabilization
by MR$_{2}$ combined $T_{x} + R_{z}$
2 axles: 3D serpentine crossing mode
Stage 03 - PW_{11}M_{02}
2 axles: 3D serpentine crossing mode
Stage 04 - PW_{11} M_{03}
2 axles: 3D serpentine crossing mode
Stage 05 - PW$_{11}$M$_{04}$
2 axles: 3D serpentine crossing mode
Stage 06 - PW_{12}M_{01}

W_{12} stabilization
by MR$_{2}$ rotation R_{z}
2 axles: 3D serpentine crossing mode
Stage 07 - PW_{12} M_{02}
2 axles: 3D serpentine crossing mode
Stage 08 - PW_{12}M_{03}
2 axles: 3D serpentine crossing mode
Stage 09 - PW \(_{12} M\)\(_{04}\)

\[W_{12} T_{z} \]
2 axles: 3D serpentine crossing mode
Stage 10

Poly-robot going forward
MR₂ moving backward
2 axles: 3D serpentine crossing mode
Stage 11 - PW_{21}M_{01}

\(W_{21} \) stabilization
by MR_{1} combined \(T_{X} + R_{Z} \)

Krid / Fauroux / Bouzgarrou
IFMA / Institut Pascal

EUCOMES 2014, 5th European Conference on Mechanism Science
2 axles: 3D serpentine crossing mode
Stage 12 - PW_{21}M_{02}

W_{21} T_{Z+}
2 axles: 3D serpentine crossing mode
Stage 13 - PW\textsubscript{21}M\textsubscript{03}

\[W_{21} T_x \]
2 axles: 3D serpentine crossing mode
Stage 14 - $PW_{21} M_{04}$
2 axles: 3D serpentine crossing mode
Stage 15 - PW_{22}M_{01}

W_{22} stabilization
by MR_{1} rotation R_{z}
2 axles: 3D serpentine crossing mode
Stage 16 - PW$_{22}M_{02}$

W$_{22}$ T_z^+
2 axles: 3D serpentine crossing mode
Stage 17 - PW$_{22}$M$_{03}$
2 axles: 3D serpentine crossing mode
Stage 18 - PW$_{22}$M$_{04}$

$W_{22} T_{Z-}$
2 axles: 3D serpentine crossing mode
Stage 19

MR$_1$ final reconfiguration by $T_x R_z$
Conclusion

C³Bots = Collaborative Cross & Carry Mobile RoBots

- C³Bots
- Kinematics
- Locomotion
- Conclusion

✔ Topic: transporting long payloads in unstructured environments with collaborative mono-robots
✔ Problem reformulation to extract the **four required mobilities** \((T_x, R_x, T_z, R_z) \)
✔ Several **new** corresponding **kinematics**
✔ Kinematical **conciseness**
✔ **Two locomotion modes** for obstacle-crossing
 ✔ For 3 axles and more: 2D mode
 ✔ For 2 axles: a 3D serpentine mode
✔ The C³Bots AT/VLP kinematics have been **patented**

Future work

✔ A **new stability margin** developed for stability on 3 wheels
✔ **Maximization of the stability margin** along the locomotion stages
✔ Both **structural** and **joint** variables can be simultaneously optimized