

Structural synthesis of innovative gripping mechanisms for wood harvesting.

Presentation content 1- The presentation topic 2-The issue formulation n°1

GOUBET David

- 1. The presentation topic
- 2. The issue formulation
- 3. The structural synthesis of a gripping mechanism
- 4. The results
- 5. Conclusion

Structural synthesis of innovative gripping mechanisms for wood harvesting.

Presentation content

1- The presentation topic

2-The issue formulation

n°2

GOUBET David

Research topic	_	ECOMEF project
Innovation and design methodologies	THESIS	Eco-design of a mechanized equipment for hardwood harvesting

Research work supervised by: - Grigore GOGU (thesis advisor) - Jean-Christophe FAUROUX Project:

- 4 years
- 3.8 millions Euros

Structural synthesis of innovative gripping mechanisms for wood harvesting.

Presentation content

1- The presentation topic

2-The issue formulation

Wood harvesting

The basic operations

3-Cutting to length

GOUBET David

Structural synthesis of innovative gripping mechanisms for wood harvesting.

Presentation content

1- The presentation topic

2-The issue formulation

n°4

GOUBET David

The mechanization of wood harvesting

Structural synthesis of innovative gripping mechanisms for wood harvesting.

1- The presentation topic

2-The issue formulation

3-The structural synthesis of a gripping mechanism

n°5

GOUBET David

- 1. The presentation topic
- 2. The issue formulation
- 3. The structural synthesis of a gripping mechanism
- 4. The results
- 5. Conclusion

Structural synthesis of innovative gripping mechanisms for wood harvesting.

1- The presentation topic

2-The issue formulation

3-The structural synthesis of a gripping mechanism

n°6

GOUBET David

Concentric gripping

Two kinds of standard gripping mechanisms for the rollers

 NUU	

2-2': upper mobile knives

3-3': rollers

4-4': support arms

- 5-5': lower mobile knives
 - 6: retractable chain saw

Physical contradiction (TRIZ theory):

The gripping mechanism must be "lateral" in order to grip small trees AND "concentric" in order to keep heavy trunks against the body.

Separation principle : Separation based on different conditions

Structural synthesis of innovative gripping mechanisms for wood harvesting.

1- The presentation topic

2-The issue formulation

3-The structural synthesis of a gripping mechanism

GOUBET David

n°8

A different gripping mechanism : SP MASKINER's patent

Structural synthesis of innovative gripping mechanisms for wood harvesting.

1- The presentation topic

2-The issue formulation

3-The structural synthesis of a gripping mechanism

Generating other mechanisms

GOUBET David

Structural synthesis of innovative gripping mechanisms for wood harvesting.

2-The issue formulation **3-The structural synthesis of a gripping mechanism** 4-The results n°10

GOUBET David

- 1. The presentation topic
- 2. The issue formulation
- 3. The structural synthesis of a gripping mechanism
- 4. The results
- 5. Conclusion

Structural synthesis of innovative gripping mechanisms for wood harvesting.

2-The issue formulation **3-The structural synthesis of a gripping mechanism** 4-The results n°11

GOUBET David

Structural parameters

A mechanism with many loops

M mobility.

r

p

S

(number of independent kinematic parameters needed to define the configuration of the mechanism)

 f_i degree of freedom in the joint i.

number of joint parameters that lose their independence in the loop closure. (for closed loop mechanisms)

- number of joints in the mechanism.
- S_{Gi} connectivity between the last link of the open kinematic chain Gi and the body, before closure.
 - connectivity between the body and the link joining all the mechanism limbs.
 - r_l sum of the r values generated by the internal loops in the different limbs of the mechanism.
- k number of limbs in the mechanism.
- N number of overconstraints.
- q number of independent loops in a multi-loop mechanism (Euler's formula).
- m number of links in the mechanism.
- T structural redundancy.

G. GOGU : Structural synthesis of parallel robots (Part 1 – Methodology) - Springer 2008

$$r = \sum_{i=1}^{k} S_{Gi} - S + r_l$$

Formulae

 $M = \sum_{i=1}^{p} f_i - r$

 $N = 6 \cdot q - r$

- T = M S
- q = p m + 1

Structural synthesis of innovative gripping mechanisms for wood harvesting.

2-The issue formulation **3-The structural synthesis of a gripping mechanism** 4-The results n°12

GOUBET David

Simplifications – step 1: removing the actuator

Structural synthesis of innovative gripping mechanisms for wood harvesting.

2-The issue formulation **3-The structural synthesis of a gripping mechanism** 4-The results n°13

GOUBET David

Simplifications – step 2: creative partial substitution

Structural synthesis of innovative gripping mechanisms for wood harvesting.

2-The issue formulation **3-The structural synthesis of a gripping mechanism** 4-The results n°14

GOUBET David

Simplifications – step 3: simplification by symmetry

$$\begin{array}{c} m_{u} = 2 \cdot m_{h} - 2 \\ p_{u} = 2 \cdot p_{h} - 1 \end{array} \right\} q_{u} = 2 \cdot q_{h} \\ N_{u} = N_{h} = 0 \end{array} \right\} r_{u} = 2 \cdot r_{h} \\ M_{u} = 2 \cdot \sum_{half} f_{i} - \sum_{common} f_{i} - r_{u} \end{array}$$

$$\begin{array}{c} M_{u} = 2 \cdot M_{h} - f_{(J1)} \\ M_{u} = 2 \cdot M_{h} - f_{(J1)} \end{array}$$

Half mechanism

 $f_{(J1)} + f_{(J2)} = M_h + 4$

Structural synthesis of innovative gripping mechanisms for wood harvesting.

2-The issue formulation

3-The structural synthesis of a gripping mechanism 4-The results n°16

GOUBET David

. . .

Resolution and listing the 9 solutions

$$\begin{cases} 0 \le M \le 6 \\ 0 \le f_i \le 6 \end{cases}$$

$$\begin{cases} f_{(J1)} = 2 \cdot M_{h} - 1 \\ f_{(J1)} + f_{(J2)} = M_{h} + 4 \end{cases}$$

	name	degree of freedom
R :	revolute	1
Ρ:	prismatic	1
C:	cylindrical	2
S :	spherical	3
P/P :	planar contact	3
S/C :	sphere / cylinder contact	4
C/P :	cylinder / plane contact	4
S/P :	sphere / plane contact	5

M_{-h}	$f_{\scriptscriptstyle (J1)}$	Possibilities for J1	$f_{\scriptscriptstyle (J2)}$	Possibilities for J2	Nb of combinations (J1,J2)
1	1	2 (P or R)	4	2 (C/P or S/C)	4
2	3	2 (S or P/P)	3	2 (S or P/P)	4
3	5	1 (S/P)	2	1 (C)	1
TOTAL:				9	

Structural synthesis of innovative gripping mechanisms for wood harvesting.

3-The structural synthesis of a gripping mechanism **4-The results** 5-Conclusion n°17

GOUBET David

- 1. The presentation topic
- 2. The issue formulation
- 3. The structural synthesis of a gripping mechanism
- 4. The results
- 5. Conclusion

Initial mechanism : J1 = planar (P/P) and J2 = spherical (S)

M_{-h}	$f_{(J1)}$	Possibilities for J1	$f_{\scriptscriptstyle (J2)}$	Possibilities for J2	Nb of combinations (J1,J2)
1	1	2 (P or R)	4	2 (C/P or S/C)	4
2	3	2 (S or P/P	3	2 (S o' P/P)	4
3	5	1 (S/P)	2	1 (C)	1
	TOTAL:				9

	Structural syn	EUCOMI hthesis of innovative gripp	E S 2012: Ding mechanisms for w	vood harvesting.	n°19	
INSTITUT PASCAL scences de l'ogéneres	3-The structural synthesis of a gripping mechanism 4-The results 5-Conclusion					
Example : J1 = revolute (R) and J2 = sphere/cylinder (S/C)						
M_{h}	$f_{\scriptscriptstyle (J1)}$	Possibilities for J1	$f_{\scriptscriptstyle (J2)}$	Possibilities for J2	Nb of combinations (J1,J2)	
1	1	2 (P or R)	4	2 (C/P o S/C	4	
2	3	2 (S or P/P)	3	2 (S or P/P)	4	
3	5	1 (S/P)	2	1 (C)	1	

TOTAL:

9

Structural synthesis of innovative gripping mechanisms for wood harvesting.

3-The structural synthesis of a gripping mechanism

4-The results

5-Conclusion

n°21

GOUBET David

Results : Is the movement symmetric?

Structural synthesis of innovative gripping mechanisms for wood harvesting.

3-The structural synthesis of a gripping mechanism

4-The results

5-Conclusion

n°22

GOUBET David

Results : Do the half mechanisms work separately or not?

M_{-h}	$f_{\scriptscriptstyle (J1)}$	Possibilities for J1	$f_{\scriptscriptstyle (J2)}$	Possibilities for J2	Nb of combinations (J1,J2)
1	1	2 (P or R)	4	2 (C/P or S/C)	4
2	3	2 (S or P/P)	3	2 (S or P/P)	4
3	5	1 (S/P)	2	1 (C)	1
				TOTAL:	9

Structural synthesis of innovative gripping mechanisms for wood harvesting.

4-The results 5-Conclusion n°23

GOUBET David

- 1. The presentation topic
- 2. The issue formulation
- 3. The structural synthesis of a gripping mechanism
- 4. The results
- 5. Conclusion

Structural synthesis of innovative gripping mechanisms for wood harvesting.

4-The results

5-Conclusion

GOUBET David

A new methodology for structural innovation

- 1. 2 kinds of standard gripping mechanisms
- 2. 1 Physical contradiction (TRIZ) : separation principle
- 3. Patent research : SP MASKINER
- 4. Structural synthesis of the gripping mechanisms
 - a. Simplification : linear actuator
 - b. Simplification : the parallel joints
 - c. Simplification : symmetry
 - d. Equations
 - e. 9 solutions
- 5. Kinematic diagrams

This method generates the **<u>exhaustive</u>** set of alternative solutions with the same DOF and behavior of a reference mechanism.

Structural synthesis of innovative gripping mechanisms for wood harvesting.

4-The results

5-Conclusion

n°25

GOUBET David

A new methodology for structural innovation

Advantages:

✓ Exhaustive

✓ Graph enumeration can be automated

Future work:

✓ Convert a structural graph into a kinematic diagram

✓ Choosing the right orientation of axis for R-C-P-S/C joints, of plane for P/P-S/P

✓ Dimensioning (distances between axes and part dimensions)

