Dynamic Obstacle-Crossing of a Wheeled Rover with Double-Wishbone Suspension

Jean-Christophe.Fauroux@ifma.fr
Belhassen-Chedli.Bouzgarrou@ifma.fr

Clermont University
French Institute for Advanced Mechanics (IFMA)
EA3867, FR TIMS / CNRS 2856
Mechanical Engineering Research Group (LaMI)
BP 10448, F-63000, FRANCE

University Pierre et Marie Curie, Paris, France

14th International Conference on Climbing and Walking Robots
6 - 8 September 2011
2011
All-terrain robots

- Most of existing commercial all-terrain mobile robots are **slow** (< 3-5m/s)
 - Low speed allows **special modes of locomotion** such as obstacle climbing modes for de-mining or industrial inspection
 - Low speed is also suitable for home use / gaming

PackBot 510 (iRobot)
- 89cm, 11kg, 2.6m/s
- www.irobot.com

Arthron R (M-Tecks EAC)
- 50cm, 10kg, 3m/s
- www.m-teckseac.com

robuCAR TT (Robosoft)
- 2m, 350kg, 5m/s
- www.robosoft.com

Speekee (Meccano)
- 30cm, 3.5kg, 0.3m/s
- www.spykeeworld.com
Fast all-terrain robots

- Many outside applications could benefit from **high speed** (more than 10m/s)
 - **Inspection** of vast areas such as airports or industrial facilities
 - Fast robots → less robots that are more dissuasive
 - Terrestrial drones: safer + larger autonomy than aerial drones
 - **Agriculture**: weeding, seeding
 - Casualty detection in case of **disaster**

Airport facilities
(Toulouse-Blagnac airport and Airbus facilities)

Inspection task after Fukushima disaster, 2011 (Photo: BBC)
Fast obstacle-crossing

- How to manage obstacle-crossing at **high speed**?
- Few work relate to the **frontal crash** on an obstacle
 - Robots thrown above obstacles
 - Crash study based on non-linear FEM
 - Experiments on a pick-up (2 tons)

Dynamic Obstacle Crossing

- All-terrain
 - Market
 - FAST
 - Goals

Experiment

Model

Conclusion

Fauroux / Bouzgarrou
IFMA, Clermont-Ferrand

14th International Conference on Climbing and Walking Robots, 6-8 September 2011, Paris
The ANR FAST Project

FAST project (**F**ast **A**utonomous Rover **S**ys**T**em)

- Funded by the French **N**ational **A**gency for **R**esearch (ANR) 2007-2011
- General goal: design an autonomous mobile robot capable to **safely move at 10m/s on all-terrain**
- Team:

- Scientific objective (among others): mechatronics design of a **dynamically auto-stable robot**
- Problem specifications:
 - Unstructured natural environment
 - Vehicle scale: from 0.3m to 2.5m
 - Speed > 10m/s
 - Obstacles

Typical addressed environment

Moors from Plateau des Millevaches
Experimenting

- First, an experimental approach of obstacle-crossing
 - Complex phenomena: non-linear fast crash of deformable mechanisms with friction and sliding
 - Experimenting allows to evaluate the most suitable laws to introduce in a simplified model, that will be presented in Part 3

- Choosing a mobile platform
 - A fast & robust vehicle
 - Small scale decreases the repair cost
 - Easy to tip-over

<table>
<thead>
<tr>
<th>Vehicle</th>
<th>E-Maxx</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass</td>
<td>5.16 kg</td>
</tr>
<tr>
<td>L x l x h</td>
<td>518 x 419 x 242 mm</td>
</tr>
<tr>
<td>Wheelbase</td>
<td>335 mm</td>
</tr>
<tr>
<td>Track width</td>
<td>330 mm</td>
</tr>
<tr>
<td>Centre of mass</td>
<td>Centred</td>
</tr>
<tr>
<td>Wheel diameter</td>
<td>150 mm</td>
</tr>
<tr>
<td>Transmission</td>
<td>4x4</td>
</tr>
<tr>
<td>Max speed</td>
<td>14 m/s</td>
</tr>
</tbody>
</table>
Experimental obstacle

- **Adjustable C⁰ obstacle**
 - Steel bar adjustable in height h
 - Includes force measurement devices (Kistler 9257B)

- All-terrain in All-terra in
- Experiment
 - Vehicle
 - Obstacle
 - Speed
 - Force
 - Results
- Model
- Conclusion

Dynamic Obstacle Crossing

- Vertical rail for obstacle height adjustment
- Steel bracket
- Adhesive
- Kistler 3 component force sensor
- Steel obstacle square section 25mm x 25mm
- Steel mass of 5kg

Closing and Walking Robots, 6-8 September 2011, Paris
Speed measurement

- Speed measured by vision
 - 30 Hz camera located on top of the impact zone
 - Tiled floor with periodic pattern of 300mm
 - Instantaneous speed comes from the 2 last images before impact
Dynamic Obstacle Crossing

- 3 DOF force-plate
 - Acquisition 1kHz

Results
- Impact force increases with obstacle height
- Peaks of 400N
- \(F_x \approx F_z \) for \(v=8\text{m/s} \) and \(h=65\text{mm} \)
- Need for a horizontal component of suspension

<table>
<thead>
<tr>
<th>Parameter</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimensions (mm)</td>
<td>170</td>
<td>140</td>
<td>60</td>
</tr>
<tr>
<td>Force range (kN)</td>
<td>-5</td>
<td>+5</td>
<td>-5</td>
</tr>
<tr>
<td>Stiffness (kN/µm)</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Natural frequency (Hz)</td>
<td>2300</td>
<td>2300</td>
<td>3500</td>
</tr>
<tr>
<td>Mass (kg)</td>
<td>7.3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Forces \(F_x \) and \(F_z \) for variable height \(h \) and speed \(v=8\text{m/s} \):
Design of experiment (DoE)

- Summary of 77 experiments (h:25→75mm, v:3→8m/s)
 - High obstacles → crash by tip-over (red dots)
 - A stability front (red line) separates experiment with / without tip-over
 - The front has a decreasing non-linear shape
 - Future suspension with 2 DOF will enhance stability zone (green line)

Videos
Simple analytical model

- Frontal crossing configuration → 2D model

 ✓ 3 rigid bodies:
 2 wheel and the chassis → 9 DOFs

 ✓ Wheel / chassis suspension forces → vertical and longitudinal linear spring-dampers

 ✓ Wheel / ground contact forces → a new formula is proposed

 ✓ Wheel / obstacle impact force → linear spring-damper in function of penetration

Fauroux / Bouzgarrou
IFMA, Clermont-Ferrand

14th International Conference on Climbing and Walking Robots, 6-8 September 2011, Paris
Equations of motion

- Newton-Euler equations

- Chassis equations

\[
\begin{align*}
\dot{m}_c \ddot{X}_c &= F_{x1} + F_{x2} \\
\dot{m}_c \ddot{Y}_c &= F_{y1} + F_{y2} - m_c g \\
I_{cz} \ddot{\theta}_c &= M_1 + M_2 - C_1 - C_2
\end{align*}
\]

- Wheel equations

\[
\begin{align*}
\dot{m}_i \ddot{X}_i &= T_i + R_{xi} - F_{xi} \\
\dot{m}_i \ddot{Y}_i &= N_i + R_{yi} - F_{yi} - m_i g \\
I_{zi} \ddot{\theta}_i &= C_i + rT_i
\end{align*}
\]
Wheel-ground contact

- **Normal force**
 - Linear spring damper model

- **Tangential force**
 - Novel formula valid for:
 - dynamic and static cases ($C_i=0$)
 - with and without slipping ($g_r=0$)

- **Impact forces**
 - Unilateral linear spring-damper force in function of penetration (e)
 - Experimental analysis with high speed camera at 10kHz

\[
N_i = \begin{cases}
 k(r - Y_i) - c\dot{Y}_i & (Y_i \leq r) \\
 0 & (Y_i > r)
\end{cases}
\]

\[
T_i = N_i \min \left(g_r \mu - (1 - g_r) \frac{C_i}{r N_i}, g_r \mu \right)
\]

with slipping

\[
g_r = \frac{-r\dot{r}_i - \dot{X}_i}{\max(|r\dot{r}_i|, |X_i|)}
\]
Simulation results and DoE

- Simulation of frontal obstacle-crossing
 - Solving of the analytical equations with Matlab

- Design of Experiments with 100 experiments (h: 7→75mm, v: 1→10m/s)

Videos
Conclusion

- **Experimental part**
 - 77 experiments with an electric vehicle at scale 1/10
 - Wheel r: 75mm, Obstacle h: 25→75mm, Speed v: 3→8m/s
 - It exists a **tip-over stability limit** $f(h,v)=c$ with f a decreasing non-linear stability frontier
 - The vehicle can cross
 - low obstacles at high speed
 - high obstacles at low speed

- **Analytical model**
 - 2D model based on dynamics and contact equations
 - Design of Experiments with 100 experiments
 - Close agreement with the decreasing tip-over stability limit

- **Impact forces**
 - Measurement of impact forces
 - F_x is as high as F_z and should be damped also
Future work

- A suspension with 2 DOF
 - The authors have shown [HUDEM 2010] that a horizontal DOF in the suspensions could benefit to longitudinal stability
 - An innovative suspension with 2 DOF based on a parallel mechanism has been designed and is under patent process
 - Analysis with high speed camera

Analytical model

- Refining the impact model by adding a non-constant stiffness
- Analytical expression of the stability frontier
- Optimization of front/rear and horizontal/vertical stiffness and damping coefficients
- Control strategy for optimal obstacle crossing