

Université Blaise Pascal

TIMS / LaMI Mechanical Engineering Research

Group

UBP Blaise Pascal University Clermont-Ferrand II

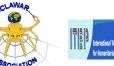
IFMA French Institute for Advanced Mechanics

A New Concept of FAST Mobile Rover with Improved Stability on Rough Terrain

Jean-Christophe.**Fauroux**@ifma.fr Jamil.**Dakhlallah**@ifma.fr Belhassen-Chedli.**Bouzgarrou**@ifma.fr

7th IARP Workshop

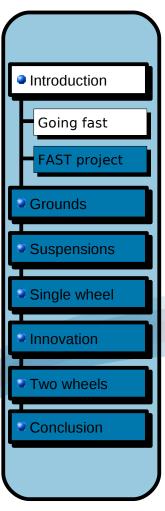
Robotics and Mechanical assistance in Humanitarian De-mining and Similar risky interventions


HUDEM'2010

10-12 May, 2010 National Engineering School of Sousse, Tunisia

Campus de Clermont-Ferrand /

Les Cézeaux, B.P. 265


63175 AUBIERE Cedex

IFMA

FRANCE

Why going FAST?

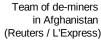
Fauroux / Dakhlallah /Bouzgarrou TIMS / LaMI, IFMA, France HUDEM '10, Sousse, Tunisia

What?

- FAST deployment
- Rapid analysis of broad areas
- Unstructured environment

Why ?

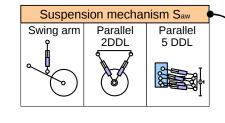
- Natural catastrophes
- **De-mining**


- Agriculture
- Security

FAST de-mining ۲

- Fast and safe
- More efficient than manual team de-mining
- Less destroying than mechanical de-mining
- A good compromise could be a float of inexpensive small collaborating robots

Krohn KMMC www.mechanical-demining.com


The ANR FAST project

TIMS / LaMI, IFMA, France HUDEM '10, Sousse, Tunisia

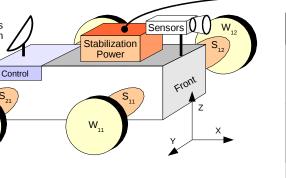
ANR Project of the French National Research Agency 2008-2011 3 academic partners / 1 enterprise TIMS / LAAS / ISIR / Robosoft

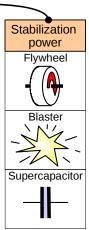
Who?

Our purpose

• Designing and controlling a new FAST rover capable to move at 10m/s on rough terrain

Wireless


connection


Rear

W₂₁

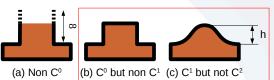
- 3 prototypes : 400kg, 150kg, 10kg
- Double purpose
 - High speed turning with lateral slipping
 - Obstacle crossing in straight line
- New mechatronics architectures
- Innovative suspensions

Types of grounds and obstacles

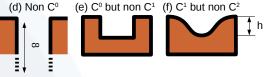
Ground description

- Mathematical surface (e.g. B-spline surface)
- Continuity: C⁰ (no hole), C¹(tangency), C²(curvature)...
- Modelling depends on the size of the vehicle (wheel radius r = 0,25m) Ex: a structured ground for a man can be unstructured for an insect

Structured ground for FAST robot



Unstructured ground to be addressed by FAST


Addressed obstacles

- Obstacle = local perturbation in the general shape of the ground
- Obstacles that cannot be crossed \rightarrow named Walls (a) and Holes (d)
- This work focuses on bumps (c) and steps (b)
- Steps (b) are worst case of C¹ bumps (c). Generally h < r

Positive obstacles

Negative obstacles

Fauroux / Dakhlallah /Bouzgarrou TIMS / LaMI, IFMA, France HUDEM '10, Sousse, Tunisia

Introduction

Suspensions

Single wheel

Innovation

Two wheels

Conclusion

Grounds

Different suspension architectures

- Objective : to improve dynamics of the vehicle on irregular grounds
- **Rigid and semi-rigid axles** : the first to appear, heavy loads, comfort
- Independent suspensions (double wishbone, Mc Pherson, trailing arm, multi-link...): comfortable, adjustable, load

springs on a trailer

Mini-Baja vehicle at Oregon State University with double wishbone suspension

Fauroux / Dakhlallah /Bouzgarrou TIMS / LaMI, IFMA, France HUDEM '10, Sousse, Tunisia

Introduction

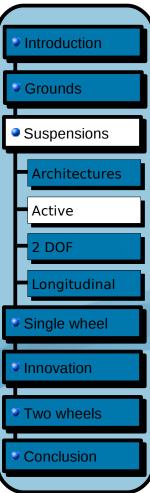
Grounds

Suspensions

Active

2 DOF

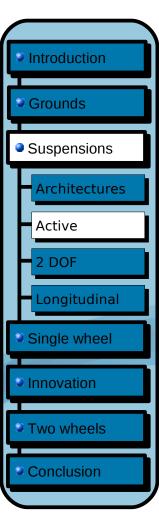
Architectures


Longitudinal

Single wheel

Two wheels

Conclusion


Innovation

Fauroux / Dakhlallah /Bouzgarrou TIMS / LaMI, IFMA, France HUDEM '10, Sousse, Tunisia

- Active suspensions (i.e. That integrate actuators)
 - Bose suspension: a Mc Pherson with spring replaced by a linear electromagnetic motor (LEM) adapted from loudspeakers
 - High translation speed
 - Energy provided for extension is recycled at compression ($E_{sm} = E_{AC}/3$)

Fauroux / Dakhlallah /Bouzgarrou TIMS / LaMI, IFMA, France HUDEM '10, Sousse, Tunisia

Active suspensions

Disque de frein

Brake disk

- Michelin Active Wheel : integrated concept (traction, brake, active suspension)
- Short travelling distance for ATVs

MICHELIN Active Wheel

AICHELTA

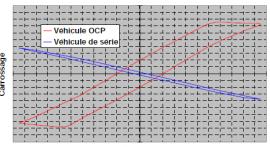
Moteur électrique de traction Puissance permanente 30 kW Electrical drive motor Continuous power : 30kW

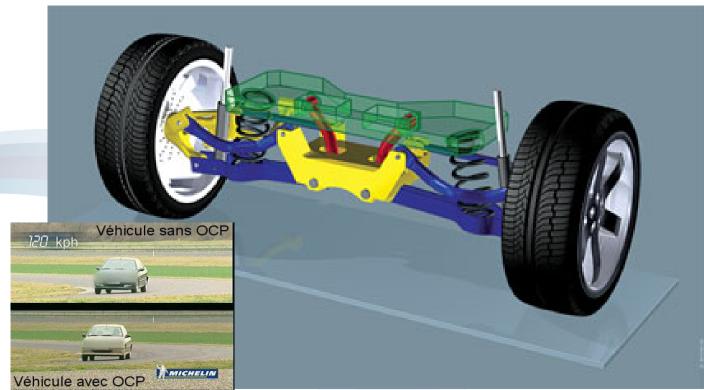
> Etrier de frein Brake caliper

Ressort de suspension Suspension spring

Moteur électrique de suspension Electrical suspension motor

> Suspension active intégrée In-wheel active suspension



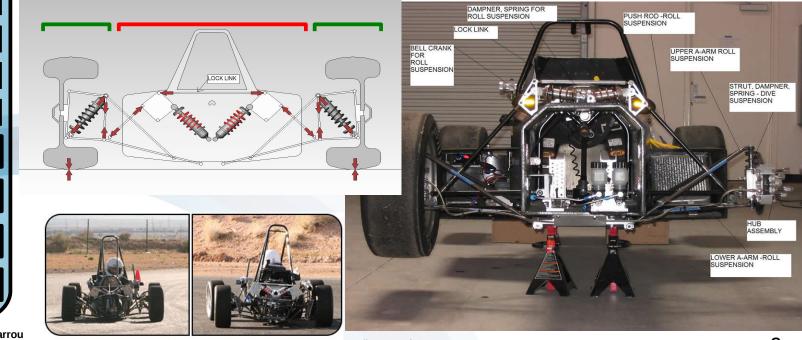

Suspensions with 2DOF per wheel

- OCP suspension (Optimized Contact Patch)
- Supplemental cambering DOF of the wheels
- Passive actuation via inertial forces
- Lower wear of contact patch
- +10% race cornering performance
- Joint WR Patents IFMA / Michelin

ractéristiques de carrossage des roues arrières en fonction de l'effort latér

Introduction Grounds Suspensions **Architectures** Active 2 DOF Longitudinal Single wheel Innovation Two wheels Conclusion

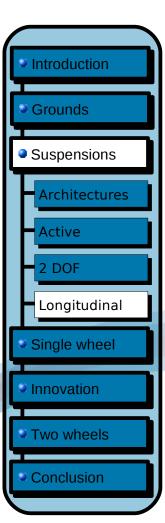
Fauroux / Dakhlallah /Bouzgarrou TIMS / LaMI, IFMA, France HUDEM '10, Sousse, Tunisia



Fauroux / Dakhlallah /Bouzgarrou TIMS / LaMI, IFMA, France HUDEM '10, Sousse, Tunisia

Suspensions with 2DOF per wheel

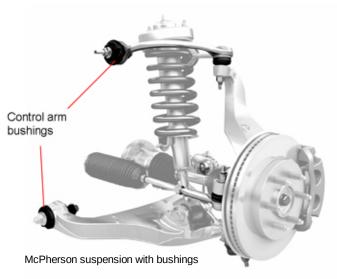
- Sacli Suspension with 2 suspension in series for dissociated vertical and roll behaviours
- In the wheels : dive suspension
- In the central frame : roll suspension
- Ability to roll with low cambering → lower wear and better traction on the contact patch during cornering



2nd prototype turn front

2nd prototype turn rear

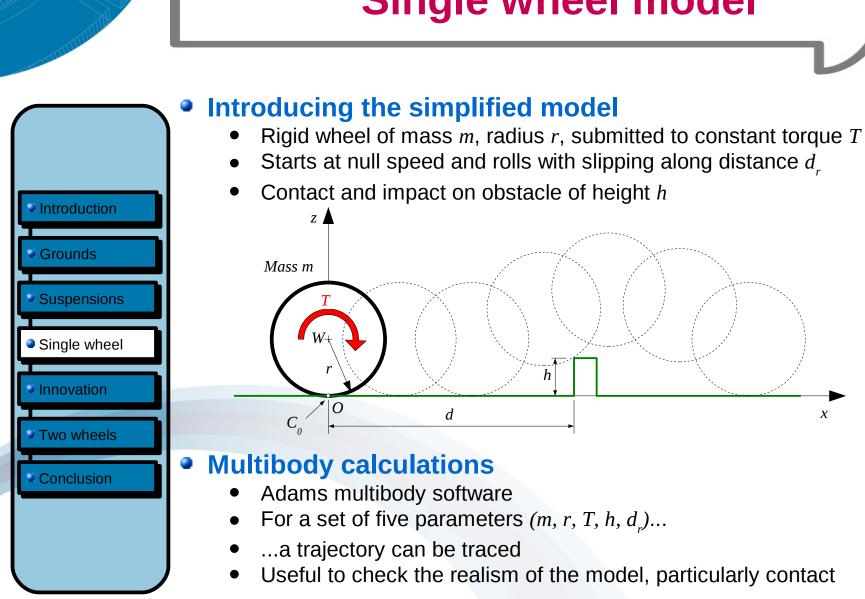
Sacli suspension www.saclisuspension.com


Fauroux / Dakhlallah /Bouzgarrou TIMS / LaMI, IFMA, France HUDEM '10, Sousse, Tunisia

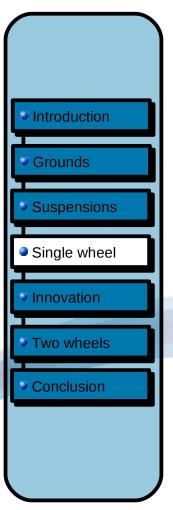
۲

Longitudinal DOF

- Classical joints are replaced by rubber bushings
- A longitudinal DOF exists with limited amplitude (a few mm)
- Useful for longitudinal comfort (high frequency small motions)



Conclusion of bibliography


- Existing suspensions are not suitable for fast obstacle crossing
- Shock absorbers and wheel motions are rather vertical (except roll)
- This work will try to create innovative suspensions for this purpose

Single wheel model

Fauroux / Dakhlallah /Bouzgarrou TIMS / LaMI, IFMA, France HUDEM '10. Sousse. Tunisia

Single wheel model: Contact

Fauroux / Dakhlallah /Bouzgarrou TIMS / LaMI, IFMA, France HUDEM '10, Sousse, Tunisia

Contact model in Adams

Elastic term

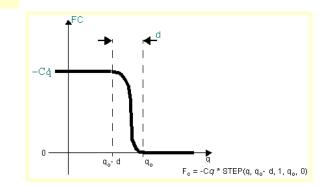
- Unilateral elastic contact with normal force *N*
 - $N = Max(0, k. (q_0 q)^e C \dot{q}. STEP(q, q_0 d, 1, q_{0,0}))$
 - k = contact stiffness q_0 -q = geometric penetration
 - *e* = positive exponent
- Damping term
 C = damping
 d = pene

Coefficient of Friction vs. Slip Velocity

Slip Velocity

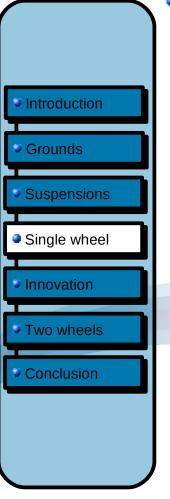
Coefficient of Friction

-Vd


-Vs

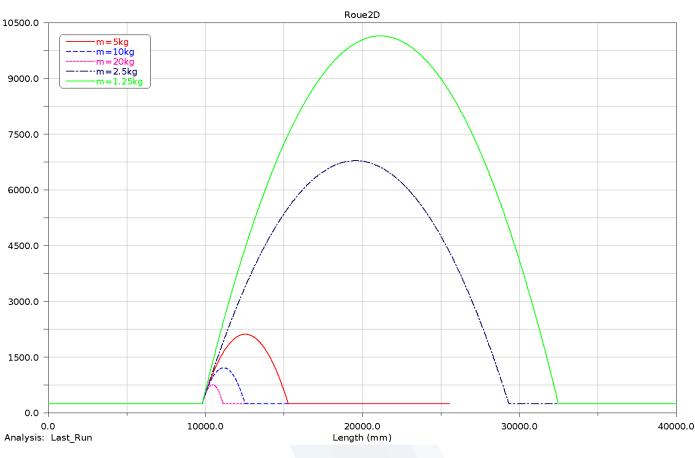
Tangential force T such as $T/N = \mu$

 μ depends on the slipping velocity V


Vd

- = damping coefficient
- = penetration speed
- = limit distance

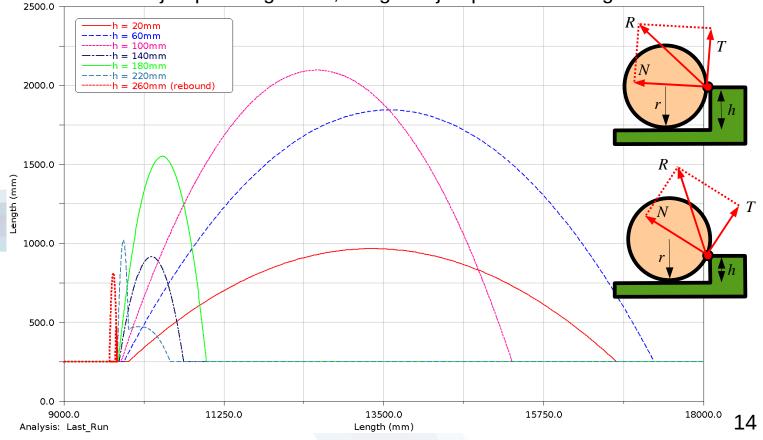
m = 5kg, r=250mm, h=100mm, T=10Nm, k=1E5N/mm $e=2, C=100Ns/mm, \mu_s=0.8, \mu_d=0.7, V_s=10mm/s, V_d=100mm/s$



ength (mm)-

Fauroux / Dakhlallah /Bouzgarrou TIMS / LaMI, IFMA, France HUDEM '10, Sousse, Tunisia

Influence of mass *m*


- A lighter wheel jumps longer/higher
- Same shape / Scale factor between trajectories

° 13

Influence of obstacle height h

- *h* has a major influence the trajectory (defines shooting direction)
- With *h*>*r*, rebound (as expected)
- Here : h=100mm for the highest jump, h=60mm for the longest jump
- $h \text{ low } \rightarrow \text{ jump is long } \& \text{ low, } h \text{ high } \rightarrow \text{ jump is short } \& \text{ high }$

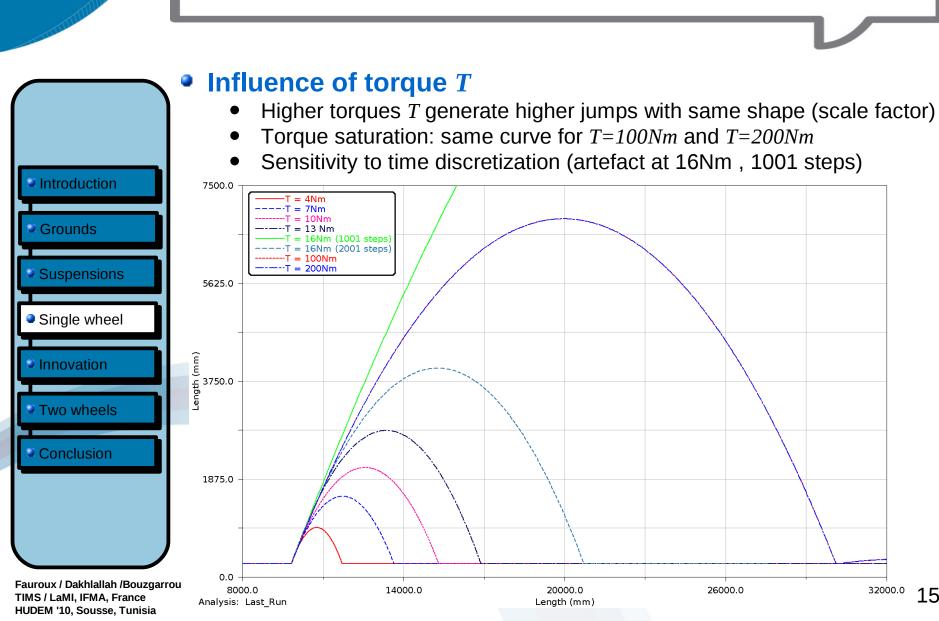
Fauroux / Dakhlallah /Bouzgarrou TIMS / LaMI, IFMA, France HUDEM '10, Sousse, Tunisia

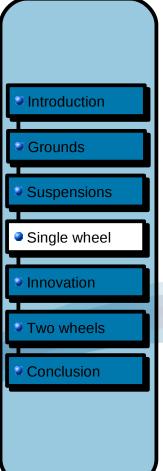
Introduction

Grounds

Suspensions

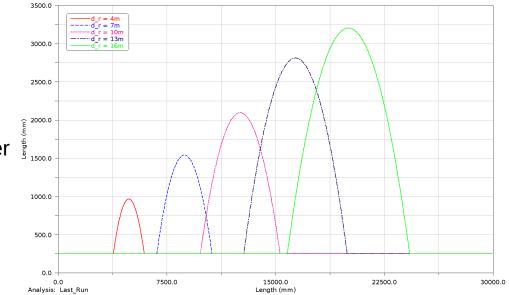
Single wheel


Innovation


Two wheels

Conclusion

32000.0


15

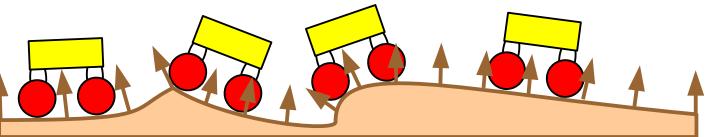
Influence of d_r

- Longer runs generate higher homothetic jumps
- Longer run → higher impact speed → higher kinetic energy

Other studies

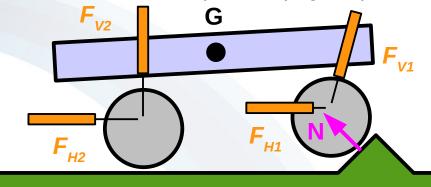
- Contact stiffness k: no effect on the trajectory if k < 1E6N/mm. Higher values of $k \rightarrow$ numeric convergence problems
- Exponent e: no big effect. e too low (e = 0.25) \rightarrow small oscillations
- Contact damping coefficient C: very strong influence: values of 1 and 10 Ns/mm lead to very different trajectories. Above 100Ns/mm, results tend to converge

• Conclusion on the single wheel model


• The model is plausible although contacts give singularities

Fauroux / Dakhlallah /Bouzgarrou TIMS / LaMI, IFMA, France HUDEM '10, Sousse, Tunisia

Innovative suspension


Longitudinal DOF

- The horizontal force cannot be neglected for fast obstacle crossing
- It depends on the orientation of the ground normal

Implementing a horizontal DOF

- Parallel architecture : cylinders connected in // to the hub-carrier
- Serial architecture : example next page implemented on Adams

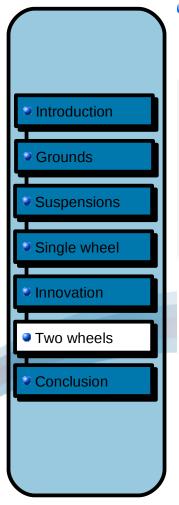
Fauroux / Dakhlallah /Bouzgarrou TIMS / LaMI, IFMA, France HUDEM '10, Sousse, Tunisia

Introduction

Grounds

Suspensions

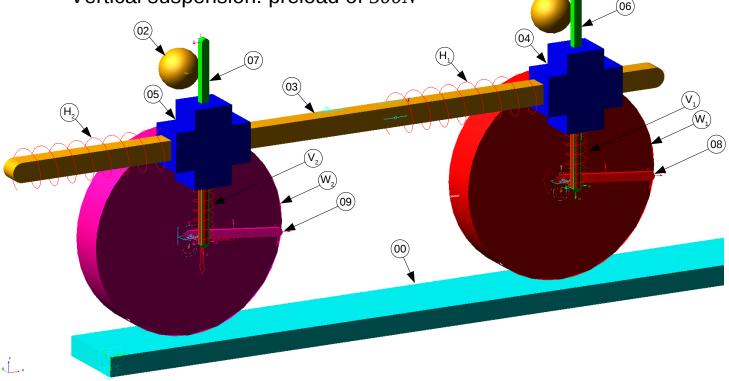
Single wheel

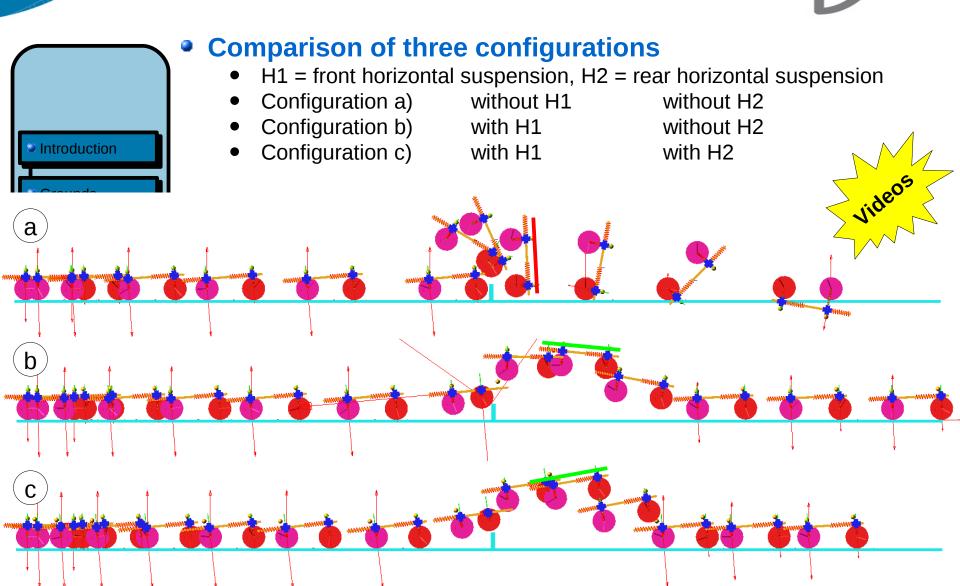

Innovation

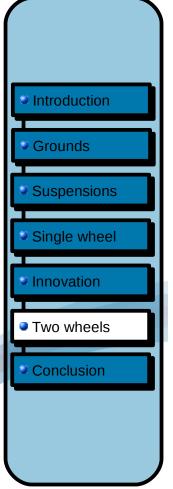
Two wheels

Conclusion

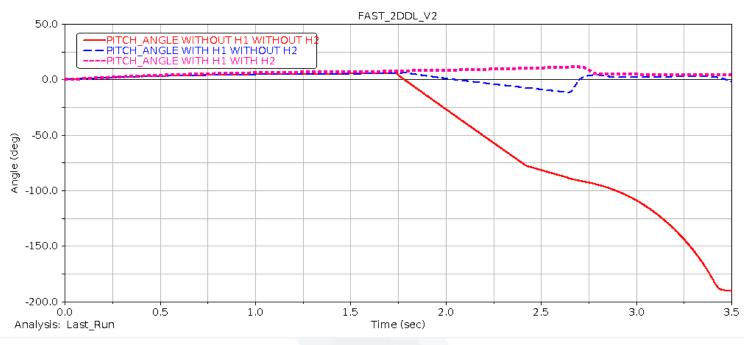
۲


Two-wheel model

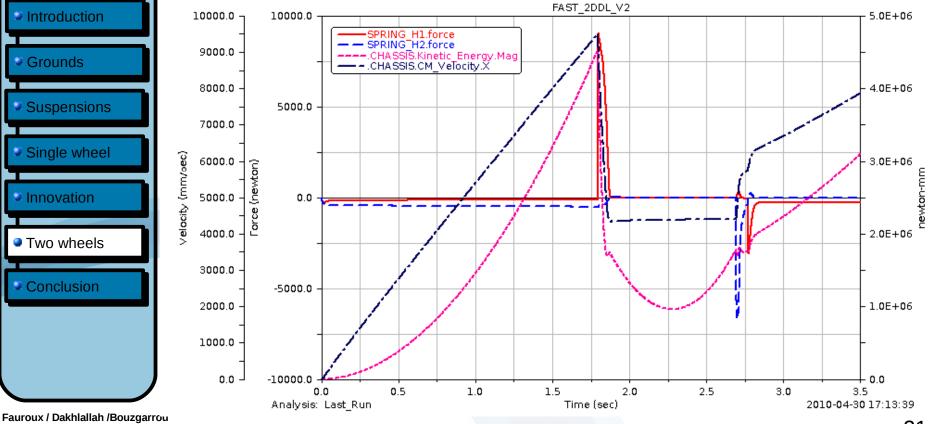

Fauroux / Dakhlallah /Bouzgarrou TIMS / LaMI, IFMA, France HUDEM '10, Sousse, Tunisia

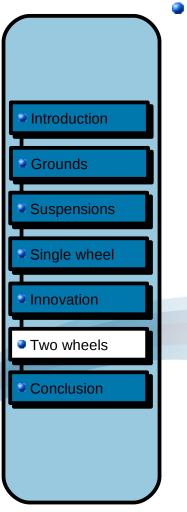

Serial architecture

- Frame mass dispatched on spheres 1-2. Parts 3-9 have no mass
- Frame: 100kg. Wheels: 5kg
- Vertical suspension: preload of 500N


r=250mm, h=350mm, T=110Nm, $k_v=5N$ /mm, $C_v=3$ Ns/mm, $k_H=5$ N/mm, $C_H=1$ Ns/mm k=1E5N/mm e=2, C=100Ns/mm, $\mu_e=0.8$, $\mu_d=0.7$, $V_e=10$ mm/s, $V_d=100$ mm/s

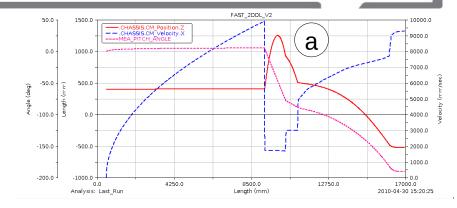
Result analysis – Pitch angle

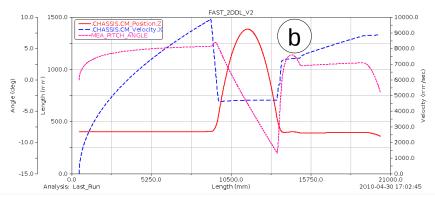

- Case a) \rightarrow tip-over. Case b) and c) \rightarrow no tip-over
- H1 seems to be efficient and compulsory for obstacle crossing.
- H2 looks optional
- b) and c) differ only by the sign of the pitch angle after the shock

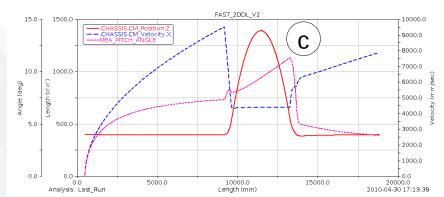

Fauroux / Dakhlallah /Bouzgarrou TIMS / LaMI, IFMA, France HUDEM '10, Sousse, Tunisia

Force and energy

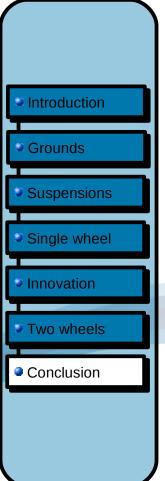
- Front suspension has 2 force peaks : shock & landing
- Rear suspension has no shock and only a landing peak


TIMS / LaMI, IFMA, France HUDEM '10, Sousse, Tunisia




Fauroux / Dakhlallah /Bouzgarrou TIMS / LaMI, IFMA, France HUDEM '10, Sousse, Tunisia

Horizontal speed decrease after impact


- a) speed divided by 5 (10m/s → 1.8 m/s) Kinetic energy /25
- b) c) speed divided by 2 (9.5m/s → 4.5m/s) Kinetic energy /4
- The horizontal suspension allows a smoother motion

Conclusion

• Main results

- Obstacle-crossing on rough terrain at high speed (10 m/s)
- Innovative principle of suspension with 2 DOF
- A vertical DOF like every suspension
- A specific horizontal DOF for steep obstacle crossing
- Can cross obstacles as high as the wheel radius
- Validated on a multibody Adams model
- Improves ride and irregular ground isolation at high speed
- Improves longitudinal stability, crossing speed & avoids tip-over

Future work

- Experimental work with Design Of Experiment (speed, obstacle height)
- Impact force measurement
- Analytical model FAST exploration of design and control space
 - 3 Scenarii : passive (constant stiffness & damping)
 - low actuation (adjustable stiffness & damping)
 - full power actuation (force injection)

PCT Patent in progress

Patent TIMS / IFMA

Fauroux / Dakhlallah /Bouzgarrou TIMS / LaMI, IFMA, France HUDEM '10, Sousse, Tunisia 10 m/s

 $h \simeq r$