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Abstract—" this paper presents a stiffness study of two

parallel robots from the Isoglide family, which hagrecoupled [dX] =[ J[ d& (1)
motions and are isotropic in translation. Stiffness an . . .

important parameter for robot design and its conapion _ [J] is known as the Jacobian matrix. A parallel robot
requires often a long calculation time and a higbmputer is[2]:

capacity. In this paper a new method for stiffneslsidation is - fully isotropic if [J] is proportional to the identity
presented. It is based on a semi-analytic stiffmesdel obtained matrix.

by decomposing the robot into elementary legs aed r - a parallel robot with uncoupled motions if] [is
assembling their stiffness matrices. This methtmhal to obtain diagonal.

stiffness in a short computing time. Based on théthod the

- a parallel robot with decoupled motions if] [is
stiffness maps of a real Isoglide prototype areetlsped. From P P I

the stiffness maps, the effects of the fourth DO the fourth triangular. . . .
leg were pointed out. - a paraIIe_I robot W|th coupled motions, in otheresas
K eywords: | soglide parallel robot, stiffness maps, The Isoglide [3] family gathers parallel robot frc_imo
are isotropic in translations.Two robots from tsedlide
I Introduction family will be treated in this paper. The first oisenamed

A parallel mechanism can be defined as mechanism 1S0glide3-T3. Itis made of three legs (dendtejiand has
with closed kinematic chain, made up of an endetdie 3 DOF in translations (T3). The second one is dalle

with N degrees of freedom and a fixed base, coedeirt Isoglide4-T3R1 and is an enhanced version of Idegh
each other by at least two kinematic chains, the T3 with a supplementary leg for adding one rotation
motorization being carried out by N actuators [K]. ~ mobility (R1) [4]. These robots are modular patalle
presents many advantages with regard to serial mechanisms and are two representatives of the deden
mechanisms (higher stiffness/mass ratio, highed,lod. Isoglide family of parallel robots [3]. Isoglide43R1 is
However it has a complex kinematics. This compjeist ~ represented in Fig 1. Isoglide3-T3 can be seen hitew
mainly due to the coupling of its motions, from wn¢he while the fourth leg is in gray.

need of the decoupling. Usually parallel robots ehav The forward differential kinematic model of the
high stiffness, which is an important parameter tioe Isoglide4-T3R1 is:

characterization of their performance. If the sffs of

the links and joints are inadequate, external locals

cause large deflexion in the mechanical parts. phjzser

presents a stiffness study based on the sub-stingtu
principle of 3 and 4 degrees of freedom (DOF) peafal
robots from the Isoglide family.

I1. Robots presentation

A parallel robot is characterised by its forward
differential kinematic model which establishes &tien
between the infinitesimal variation of joint coardtes
[dq] and the infinitesimal variation of the operatibna
coordinatesdX]. This relation can be expressed in matrix

form as:
dx, 1 0 0 0 dq
dy, 0 1 0 0 dg,
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where, r is the moving platform length defined as the
distance betweeH andP andgp is its orientation angle.
The Jacobian matrix of the Isoglide4-T3R1 show(2in
is triangular. Consequently the robot has decoupled
motions. The sub-matrix which maps translations
velocities to the first three actuator velocitie§ tbe
Isoglide3-T3 is the identity matrix. The Isoglidé3-is
fully isotropic and the Isoglide4-T3R1 is isotropio
translation. The integration of (2) gives the fordva
kinematic model from which it is possible to get al
geometric parameters of the robot notably the tddirig
angles and the arm orientations.

[11.Problem setting

The problem consists in calculating the deformatibn
the Isoglide in all its workspace. Thus, it is att@a of
applying the Hooke's law:

[KI[x]=[F] 3)

on the Isoglide that becomes a structure if itsatctrs are
locked. Two approaches for the stiffness calcutattan
be applied, considering deformation located in aitits
and assuming each one to a spring [11], considdirikg
deformations where various methods of computatim c
be applied:

springs (lumped stiffness) [6,7,12],

- study of the displacement considering each compgonen
as a beam, using Euler-Bernoulli beam model for
instance (distributed stiffness) [8- 10, 17],

- numerical simulation via the Finite Element Method
(FEM) [5, 13-16, 19]

The lumped stiffness method gives acceptable resalt
quick computation time, but it is very hypothetithe

second method gives good result if the componerds a

assuming the components as linear and torsional

A.lsolated leg stiffness matrix

Because of revolute joints, the leg can only befaree
parallel to its revolute joint axes, or a momenickihdoes
not have a component parallel to these axes. The
compliance matrix of the leg maps three loads teeh
displacements and is a 3x3 matrix.

The leg is made from two solids connected by altggo
joint (Fig 2). The solidBC is called arm and denotegl
The solidCD is called forearm and denotéd Arm and
forearm are two sub-structures serially conneciduke
compliance matrix of the leg is consequently the sf
the arm and the forearm compliance matrices reduced
pointD (center of revolute joinD)

Fig.2: CAD model of an isolated leg

The compliance matrix of the leg is:
(s1=["sl+[U"[* 94,

where [ *s] and [ 's] are the compliance matrix of the

(4)

beams. The FEM has the advantage of giving the bestarm and the forearnju] is the transition matrix between

result since the Isoglide is modelled with its trsleape
and dimension. The only error in this method is ttuthe
discretisation of the continuous space [18]. On dtteer
hand, this method has the disadvantage that ifiresjan
extensive computation time [9].

In this paper, we present a new method for thénsts
calculation based on the sub-structuring princifibis
method has the advantage that it gives the samtses
FEM with shorter calculation time and few computer
capacity and memory.

IV.Stiffness calculation

The methodology used in this paper benefits from th
modular design of the robot. First we calculate the
stiffness matrix of an isolated leg. The Isoglide3-
stiffness matrix is deduced by the assembly ofehegs.
Isoglide4-T3R1 structure is the assembly of two
substructures, the Isoglide3-T3 structure and dletth leg
L, structure.

the arm coordinate system at poidtand the forearm
coordinate system at poiBtand is given by (5) [19]:

L -LsinC LcosC
[u]=|0 -cosC sinC (5)
0 -sinC coC

Matrix [§ established in equation (4) is reversible. The
matrix [§* can be denoted:

Ky ko Ky
[SI"=| ki Kk, Kyl (6)
Ky Ky Ky

The stiffness matrix of the leg is given by:
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0O 0 0 O O o
0 ky, 0 k, 0 ki
0O 0 0 O O o
[K]= @)
0 k, 0 k, 0 ki,
0O 0 0 O O o
10 ky 0 Kk, 0 k]
The stiffness matrix is singular. This singularity

corresponds to passive joints which are very cominon

parallel robots. The supplemental zeros are cheniatit
of the remaining DOF in the isolated leg.
B.Isoglide3-T3 stiffness matrix.

The Isoglide3-T3 is made of three legs connectethby
moving platform considered as infinitely rigid. Theee

legs are three sub-structure mounted in paralléle T

Isoglide3-T3 stiffness matrix reduced to its chégestics

point P13 is the sum of the three leg stiffness matrices

reduced tdPqs.

Fig.3: Moving platform of the Isoglide3-T3

Then, the Isoglide3-T3 stiffness matrix is:

RO G GRS G IR

with:
_|R 0,
[R]—L)S FJ 9)
8]- I [PDi] (10)
0, I,
where:

- ['K] s the stiffness matrix df; calculated in (7).
- [R] is the transition matrix between the

system

- [ﬁgf} is the pre-cross product matrix of the vector

PD:.
- lsis the 3x3 identity matrix.
- 03 is the 3x3 null matrix.

local
coordinate system of; and the global coordinate

Equation (8) gives the stiffness matrix of the lgme3-
T3 reduced to its characteristic point. This ma#ilows
calculating loads generated by the Isoglide3-T3mihés
subjected to an imposed displacement. On the bitued,

the inverse OT{T‘?KJ gives the displacements Bf; due

to the elastic deformations of the Isoglide3-T3 wliteis
subjected to an external loadRgt.
C.Isoglide4-T3R1 stiffness matrix.

The stiffness matrix of the Isoglide3-T3 can beduse
the calculation of the Isoglide4-T3R1 stiffness mxatlue
to its modular design. In fact, the Isoglide3-T3d ahe
fourth leg L, can be considered as two sub-structures
connected in parallel by the Isoglide4-T3R1 moving
platform considered infinitely rigid. The Isoglidd8R1
stiffness matrix is the sum of the Isoglide3-T3 dhelL,
stiffness matrices.

Legs in the Isoglide3-T3 are connected to the ngvin
platform by revolute joints and their stiffness s
calculated by eq (7) are relative to a revolutetjaitD. In
Isoglide4-T3R1,L, is connected to the moving platform
by a universal joint. The Isoglide3-T3 is connectedhe
platform by a revolute joint that is not yet takero
account in the stiffness matrix’k] (8). To calculate the
stiffness matrix of the Isoglide4-T3R1 a twist slkibbe
applied atP, induced displacement &3 andD, should
be calculated and consequently loads generated. The
revolute joint atPy;, cannot transmit any torque around
the z-axis between the Isoglide3-T3 and the moving
platform. Consequently, the Isoglide3-T3 rotationund
the z-axis is not constrained by the moving platfoat
P15, it is imposed by the static equilibrium. In faift,

[™k]=["% ] (=1..6,j=1..6) (11)

is the stiffness matrix of the Isoglide3-T3 caldath in
(8). The fact that the torque around the z axisuis gives
the stiffness matrix K13 of the leg formed by the
Isoglide3-T3 [19]:

Fig.4: Moving platform of the Isoglide4-T3R1
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T3k61
T3k62
T3k63
T3k64
T3k65
| T3k66 |

On the other handl, is connected to the moving
platform by a universal joint. Torques around thaxs
and the y-axis in the universal joint are zero. Bewic
conditions impose that rotational deformatiorLgfiround
the x-axis is equal to the imposed rotatioriPtaround the

1
KT3 = T3 12
[Kr] kﬁe (12)

I~

R O O O O O

x-axis because the moving platform is considered as

infinitely rigid. The problem unknowns are loadd.inand

its deformations ab,. The static equilibrium constraints
give 3 equations and geometry constraints give 3
equations Finally there is a linear set, made byations
and 6 unknowns, from which it will be possible tet @
linear relation between twidf, imposed td® and wrench

w, generated by, This relation can be expressed in
matrix form by:

[w.]=[ K ][t]

[ “K] is equivalent to a stiffness matrix foy taking in

(13)

consideration the universal joint. Finally the fstifss
matrix of the Isoglide4-T3R1 is:

[Pk =B (K]l Bra] +[ K],

where Brg is the same ad[] corresponding to the point
PT3.

Equation (14) gives the stiffness matrix of theglade3-
T3R1 at each point of its workspace. Based on this
equation, stiffness maps of the Isoglide4-T3R1 ben
drawn, such as the deformation of the Isoglide4-T3R
under an external load can be estimated.

(14)

V. Application

A real prototype of the Isoglide4-T3R1 was builttla¢
mechanical engineering research group with the
collaboration of the LASMEA in Clermont-Ferrand.
Calculation with the FEM [19] gives:

3.20 10" 0 7.42 10
[s]=| o 1.13 10° 0 (15)
7.42 107 0 2.44 10
and:
7.1510° -26610 1.2410
['s]=|-26610 56110 1.1510. (16)
12410 11510 52510

as compliance matrices for the arm and the forearm
In [?S] and [S] length are measured in mm, forces in N
and angles in radian.

Fig.5: real prototype of the Isoglide4-T3R1

The injection of[ *s] and [ 's]in equations (8) and

(14) allows getting a semi-analytical model for the
stiffness matrix of the Isoglide3-T3 and the Isdgh-
T3R1, from which stiffness maps can be deduced. &ig
and Fig. 7). From the stiffness maps, it is possitd
remark that termgk,, and k,, do not change a lot between

the Isoglide3-T3 and the Isoglide4-T3R1. The tdgn of

the Isoglide4-T3R1 is approximately doubled withect
to Isoglide3-T3 with a smaller relative differenoetween
its maximum and minimum values. In both
configurations, the ternk,, is the smallest among the first

three diagonal components of the stiffness ma®ix.the
other hand, components corresponding to the rotaial
the moment around z-axis are smaller in Isoglid8&RT.

It can be noticed thafK,] is smaller in the Isoglide4-

T3R1. This means that the moment around y-axisitgad
the Isoglide4-T3R1 during a pure rotational defdiora

of the moving platform around the z-axis, can be
neglected. This could be explained by the reledsene
degree of mobility.
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Fig.6: Stiffness maps of the Isoglide3-T3
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Fig.7: Stiffness maps of the Isoglide4-T3R1
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VI.Conclusions and prospects

In this paper, a stiffness study for two paraliebots [11]
with the sub-structuring principle was presentedie T
modular aspect of the robot was used to calculage t [12]
stiffness matrix of a leg. This stiffness matrix sstnen
used to calculate the stiffness matrix of the lstaf-T3 [13]
and both stiffness matrices were used to calcukete of
the Isoglide4-T3R1. A numerical application wasrieat
out. From this numerical application it was possibd [14]

highlight the effects of the fourth leg such ast thfathe

fourth degree of freedom. Our semi-analytical model [15]
based on sub-structuring allows us to reduce the
computation time at about 5 seconds with respect to

corresponding time of 60 hours necessary for asidals [16]
FEM calculation without sub-structuring as reporied
[16]. This is the strongest point of this methodlo

In this paper, the manufacturing defects in theotob
structure and the effects of the industrial toleesnwere [17]
ignored. In reality, they would induce parallelistafects 8]

between the revolute joint axes. Moreover, duriogpk
closure pre-stress are introduced in the robotcttre.
The analysis of these prestress effects on thetrobo [19]
stiffness requires a non-linear analysis. This fgnobwill

be the subject of a next paper.
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