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 Abstract—1 this paper presents a stiffness study of two 
parallel robots from the Isoglide family, which have decoupled 
motions and are isotropic in translation. Stiffness is an 
important parameter for robot design and its computation 
requires often a long calculation time and a high computer 
capacity. In this paper a new method for stiffness calculation is 
presented. It is based on a semi-analytic stiffness model obtained 
by decomposing the robot into elementary legs and re-
assembling their stiffness matrices. This method allows to obtain 
stiffness in a short computing time. Based on this method the 
stiffness maps of a real Isoglide prototype are developed. From 
the stiffness maps, the effects of the fourth DOF and the fourth 
leg were pointed out. 
 Keywords: Isoglide parallel robot, stiffness maps, 
modular design, sub-structuring, semi-analytic model 

I. Introduction 

A parallel mechanism can be defined as mechanism 
with closed kinematic chain, made up of an end-effector 
with N degrees of freedom and a fixed base, connected to 
each other by at least two kinematic chains, the 
motorization being carried out by N actuators [1]. It 
presents many advantages with regard to serial 
mechanisms (higher stiffness/mass ratio, higher load,…). 
However it has a complex kinematics. This complexity is 
mainly due to the coupling of its motions, from where the 
need of the decoupling. Usually parallel robots have a 
high stiffness, which is an important parameter for the 
characterization of their performance. If the stiffness of 
the links and joints are inadequate, external loads can 
cause large deflexion in the mechanical parts. This paper 
presents a stiffness study based on the sub-structuring 
principle of 3 and 4 degrees of freedom (DOF) parallel 
robots from the Isoglide family. 

II. Robots presentation 

A parallel robot is characterised by its forward 
differential kinematic model which establishes a relation 
between the infinitesimal variation of joint coordinates 
[dq] and the infinitesimal variation of the operational 
coordinates [dX]. This relation can be expressed in matrix 
form as: 
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[ ] [ ][ ]dX J dq=  (1) 

[J] is known as the Jacobian matrix. A parallel robot 
is[2]: 
- fully isotropic if [J] is proportional to the identity 

matrix. 
- a parallel robot with uncoupled motions if [J] is 

diagonal. 
- a parallel robot with decoupled motions if [J] is 

triangular. 
- a parallel robot with coupled motions, in other cases. 

The Isoglide [3] family gathers parallel robot from 2 to 
6 DOF. All these robots are with decoupled motions and 
are isotropic in translations.Two robots from the Isoglide 
family will be treated in this paper. The first one is named 
Isoglide3-T3. It is made of three legs (denoted Li ) and has 
3 DOF in translations (T3). The second one is called 
Isoglide4-T3R1 and is an enhanced version of Isoglide3-
T3 with a supplementary leg for adding one rotation 
mobility (R1) [4]. These robots are modular parallel 
mechanisms and are two representatives of the extended 
Isoglide family of parallel robots [3]. Isoglide4-T3R1 is 
represented in Fig 1. Isoglide3-T3 can be seen in white 
while the fourth leg is in gray. 

The forward differential kinematic model of the 
Isoglide4-T3R1 is: 
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Fig.1: Kinematic scheme and graph of the Isoglide4-T3R1 
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where, r is the moving platform length defined as the 
distance between H and P and φP is its orientation angle. 

The Jacobian matrix of the Isoglide4-T3R1 shown in (2) 
is triangular. Consequently the robot has decoupled 
motions. The sub-matrix which maps translations 
velocities to the first three actuator velocities of the 
Isoglide3-T3 is the identity matrix. The Isoglide3-T3 is 
fully isotropic and the Isoglide4-T3R1 is isotropic in 
translation. The integration of (2) gives the forward 
kinematic model from which it is possible to get all 
geometric parameters of the robot notably the leg folding 
angles and the arm orientations. 

III.Problem setting 

The problem consists in calculating the deformation of 
the Isoglide in all its workspace. Thus, it is a matter of 
applying the Hooke's law: 

[ ][ ] [ ]K X F=  (3) 

on the Isoglide that becomes a structure if its actuators are 
locked. Two approaches for the stiffness calculation can 
be applied, considering deformation located in actuators 
and assuming each one to a spring [11], considering links 
deformations where various methods of computation can 
be applied: 
- assuming the components as linear and torsional 

springs (lumped stiffness) [6,7,12], 
- study of the displacement considering each component 

as a beam, using Euler-Bernoulli beam model for 
instance (distributed stiffness) [8- 10, 17], 

- numerical simulation via the Finite Element Method 
(FEM) [5, 13-16, 19] 

The lumped stiffness method gives acceptable result in a 
quick computation time, but it is very hypothetic. The 
second method gives good result if the components are 
beams. The FEM has the advantage of giving the best 
result since the Isoglide is modelled with its true shape 
and dimension. The only error in this method is due to the 
discretisation of the continuous space [18]. On the other 
hand, this method has the disadvantage that it requires an 
extensive computation time [9]. 

In this paper, we present a new method for the stiffness 
calculation based on the sub-structuring principle. This 
method has the advantage that it gives the same results as 
FEM with shorter calculation time and few computer 
capacity and memory. 

IV. Stiffness calculation 

The methodology used in this paper benefits from the 
modular design of the robot. First we calculate the 
stiffness matrix of an isolated leg. The Isoglide3-T3 
stiffness matrix is deduced by the assembly of three legs. 
Isoglide4-T3R1 structure is the assembly of two 
substructures, the Isoglide3-T3 structure and the fourth leg 
L4 structure. 

A. Isolated leg stiffness matrix 

Because of revolute joints, the leg can only bear a force 
parallel to its revolute joint axes, or a moment which does 
not have a component parallel to these axes. The 
compliance matrix of the leg maps three loads to three 
displacements and is a 3x3 matrix.  

The leg is made from two solids connected by a revolute 
joint (Fig 2). The solid BC is called arm and denoted ai. 
The solid CD is called forearm and denoted fi. Arm and 
forearm are two sub-structures serially connected. The 
compliance matrix of the leg is consequently the sum of 
the arm and the forearm compliance matrices reduced to 
point D (center of revolute joint D) 
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Fig.2: CAD model of an isolated leg  

The compliance matrix of the leg is: 

[ ] [ ][ ]
Tf aS S U S U= +       , (4) 

where aS    and f S    are the compliance matrix of the 

arm and the forearm, [ ]U  is the transition matrix between 

the arm coordinate system at point C and the forearm 
coordinate system at point D and is given by (5) [19]: 

[ ]
ˆ ˆsin cos
ˆ ˆ0 cos sin
ˆ ˆ0 sin cos

L L C L C

U C C

C C

−

= −

−
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 (5) 

Matrix [S] established in equation (4) is reversible. The 
matrix [S]-1 can be denoted: 

[ ]
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. (6) 

The stiffness matrix of the leg is given by: 
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The stiffness matrix is singular. This singularity 
corresponds to passive joints which are very common in 
parallel robots. The supplemental zeros are characteristic 
of the remaining DOF in the isolated leg. 
B. Isoglide3-T3 stiffness matrix. 

The Isoglide3-T3 is made of three legs connected by the 
moving platform considered as infinitely rigid. The three 
legs are three sub-structure mounted in parallel. The 
Isoglide3-T3 stiffness matrix reduced to its characteristics 
point PT3 is the sum of the three leg stiffness matrices 
reduced to PT3. 
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Fig.3: Moving platform of the Isoglide3-T3 

Then, the Isoglide3-T3 stiffness matrix is: 
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where: 
- [ iK] is the stiffness matrix of Li calculated in (7). 
- [Ri] is the transition matrix between the local 

coordinate system of Li and the global coordinate 
system 

- iPD
∧ 

  

���

 is the pre-cross product matrix of the vector 

iPD
���

. 
- I3 is the 3x3 identity matrix. 
- 03 is the 3x3 null matrix. 

Equation (8) gives the stiffness matrix of the Isoglide3-
T3 reduced to its characteristic point. This matrix allows 
calculating loads generated by the Isoglide3-T3 when it is 
subjected to an imposed displacement. On the other hand, 

the inverse of T 3K    gives the displacements of PT3 due 

to the elastic deformations of the Isoglide3-T3 when it is 
subjected to an external load at PT3. 
C. Isoglide4-T3R1 stiffness matrix. 

The stiffness matrix of the Isoglide3-T3 can be used in 
the calculation of the Isoglide4-T3R1 stiffness matrix due 
to its modular design. In fact, the Isoglide3-T3 and the 
fourth leg L4 can be considered as two sub-structures 
connected in parallel by the Isoglide4-T3R1 moving 
platform considered infinitely rigid. The Isoglide4-T3R1 
stiffness matrix is the sum of the Isoglide3-T3 and the L4 
stiffness matrices. 

Legs in the Isoglide3-T3 are connected to the moving 
platform by revolute joints and their stiffness matrices 
calculated by eq (7) are relative to a revolute joint at D. In 
Isoglide4-T3R1, L4 is connected to the moving platform 
by a universal joint. The Isoglide3-T3 is connected to the 
platform by a revolute joint that is not yet taken into 
account in the stiffness matrix [T3K] (8). To calculate the 
stiffness matrix of the Isoglide4-T3R1 a twist should be 
applied at P, induced displacement at PT3 and D4 should 
be calculated and consequently loads generated. The 
revolute joint at PT3, cannot transmit any torque around 
the z-axis between the Isoglide3-T3 and the moving 
platform. Consequently, the Isoglide3-T3 rotation around 
the z-axis is not constrained by the moving platform at 
PT3, it is imposed by the static equilibrium. In fact, if: 

T 3 T 3

ijK k=        (i=1..6, j=1..6) (11) 

is the stiffness matrix of the Isoglide3-T3 calculated in 
(8). The fact that the torque around the z axis is null gives 
the stiffness matrix [KT3] of the leg formed by the 
Isoglide3-T3 [19]: 
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On the other hand, L4 is connected to the moving 
platform by a universal joint. Torques around the z-axis 
and the y-axis in the universal joint are zero. Geometric 
conditions impose that rotational deformation of L4 around 
the x-axis is equal to the imposed rotation to P around the 
x-axis because the moving platform is considered as 
infinitely rigid. The problem unknowns are loads in L4 and 
its deformations at D4. The static equilibrium constraints 
give 3 equations and geometry constraints give 3 
equations Finally there is a linear set, made by 6 equations 
and 6 unknowns, from which it will be possible to get a 
linear relation between twist 

P
t  imposed to P and wrench 

w4 generated by L4. This relation can be expressed in 
matrix form by: 

[ ] [ ]4

4

e

PKw t=     (13) 

4eK    is equivalent to a stiffness matrix for L4 taking in 

consideration the universal joint. Finally the stiffness 
matrix of the Isoglide4-T3R1 is: 

[ ] [ ][ ]3 1 4

3 3 3

TT R e

T T TK B K B K= +       , (14) 

where [BT3] is the same as [Bi] corresponding to the point 
PT3.  

Equation (14) gives the stiffness matrix of the Isoglide3-
T3R1 at each point of its workspace. Based on this 
equation, stiffness maps of the Isoglide4-T3R1 can be 
drawn, such as the deformation of the Isoglide4-T3R1 
under an external load can be estimated. 

V. Application 

A real prototype of the Isoglide4-T3R1 was built at the 
mechanical engineering research group with the 
collaboration of the LASMEA in Clermont-Ferrand. 
Calculation with the FEM [19] gives: 
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and: 
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as compliance matrices for the arm and the forearm  
In [aS] and [fS] length are measured in mm, forces in N 

and angles in radian. 

 
Fig.5: real prototype of the Isoglide4-T3R1 

The injection of aS    and f S   in equations (8) and 

(14) allows getting a semi-analytical model for the 
stiffness matrix of the Isoglide3-T3 and the Isoglide4-
T3R1, from which stiffness maps can be deduced (Fig. 6 
and Fig. 7). From the stiffness maps, it is possible to 
remark that terms 11k  and 33k  do not change a lot between 

the Isoglide3-T3 and the Isoglide4-T3R1. The term 22k  of 

the Isoglide4-T3R1 is approximately doubled with respect 
to Isoglide3-T3 with a smaller relative difference between 
its maximum and minimum values. In both 
configurations, the term 11k  is the smallest among the first 

three diagonal components of the stiffness matrix. On the 
other hand, components corresponding to the rotation and 
the moment around z-axis are smaller in Isoglide4-T3R1. 
It can be noticed that [ ]56K  is smaller in the Isoglide4-

T3R1. This means that the moment around y-axis loading 
the Isoglide4-T3R1 during a pure rotational deformation 
of the moving platform around the z-axis, can be 
neglected. This could be explained by the release of one 
degree of mobility. 
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Fig.6: Stiffness maps of the Isoglide3-T3 

 
Fig.7: Stiffness maps of the Isoglide4-T3R1
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VI. Conclusions and prospects 

In this paper, a stiffness study for two parallel robots 
with the sub-structuring principle was presented. The 
modular aspect of the robot was used to calculate the 
stiffness matrix of a leg. This stiffness matrix was then 
used to calculate the stiffness matrix of the Isoglide3-T3 
and both stiffness matrices were used to calculate that of 
the Isoglide4-T3R1. A numerical application was carried 
out. From this numerical application it was possible to 
highlight the effects of the fourth leg such as that of the 
fourth degree of freedom. Our semi-analytical model 
based on sub-structuring allows us to reduce the 
computation time at about 5 seconds with respect to 
corresponding time of 60 hours necessary for a classical 
FEM calculation without sub-structuring as reported in 
[16]. This is the strongest point of this methodology. 

In this paper, the manufacturing defects in the robot 
structure and the effects of the industrial tolerances were 
ignored. In reality, they would induce parallelism defects 
between the revolute joint axes. Moreover, during loops 
closure pre-stress are introduced in the robot structure. 
The analysis of these prestress effects on the robot 
stiffness requires a non-linear analysis. This problem will 
be the subject of a next paper. 
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