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Abstract: 

In this paper a new identification method of bushing stiffness parameters in car suspension mechanism is 
presented. This method is based on the observation of part motions in a suspension on a Kinematic and 
Compliance (K&C) test bench. This observation is used to compute bushing deflections for various load cases 
applied on the suspension. An iterative identification method has been set up and interfaced with a 
commercial multibody simulation software (ADAMS) in order to find a set of stiffness parameters that 
achieve the correlation between model and reality. This identification method is tested on a pseudo Mc 
Pherson suspension and on a complex multilink rear suspension. In each case, behaviour of the identified 
model converges towards the reference behaviour. 

Keywords: Car suspension, elastokinematic, stiffness parameter identification, 
elastomer bushing, multibody simulation, ADAMS. 

1 INTRODUCTION 

The automotive industry was an early user of multibody simulation software for vehicle behaviour analysis 
and suspension mechanism design. The use of these tools allows to reduce the time needed to develop new 
suspensions. But before using a model to improve an existing vehicle, it is important to correlate the model 
with a real vehicle in order to ensure that modelling assumptions and model parameters are valid. That is why 
model correlation is a recurrent problem. 

Obtaining a full correlation between a model and a given suspension is a complex task. The complex 
behaviour of rubber bushing used for vibration filtering is a known cause of discrepancy between model and 
reality [1,2]. To build a correct elastokinematic model of a given suspension, bushing stiffness must be 
determined. However, direct measurement of stiffness is very difficult because it requires a full disassembly. 
Therefore an identification method may be used to find stiffness values and attain a reliable model. 

Former identification methods addressing this problem are based on the analysis of the wheel behaviour on 
a Kinematic and Compliance (K&C) test bench. As typical vehicle models used in industry are over 
complex[3], the first necessary step is to use statistical design of experiments in order to determine which 
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parameters influence wheel behaviour most[4]. Then, the application of optimisation routines for these 
parameters can be used to fit the model behaviour to experimental results [5]. The identification is then similar 
to a problem of optimal design [6]. These techniques imply the realisation of a high number of simulations 
and advanced knowledge of numerical computation is required. 

The aim of this paper is to provide a more simple identification method that is no longer based solely on 
the observation of the wheel. This method uses observed displacements of each solid part connected by 
bushing in the suspension when various load cases are applied on the wheel. Section 2 presents the method 
used to compute part location and orientation on an assembled suspension starting from coordinate 
measurements of a minimum number of reference points using a portable Coordinate Measuring Machine 
(CMM). Based on this data, bushing deflections are computed for each load case. 

To achieve simple tool for a frequent use in an engineering department, the identification method detailed 
in section 3 could be implemented on any commercial multibody simulation software. Usually, this type of 
software cannot consider stiffness parameters as unknown terms and is opaque for the user. An original 
approach was developed to modify iteratively an initial estimate of stiffness parameters until the behaviour of 
each bushing in the model is similar to experimental results. 

To validate this method, a software tool has been written and tested on two different suspension 
architectures: a pseudo Mc Pherson front suspension and an innovative rear axle designed by Michelin in 
application of the Optimized Contact Patch (OCP) concept [7,8]. In these two cases, identification has been 
performed using numerical simulation. Finally an experimental validation is presented on a pseudo Mc 
Pherson. Results of this experimentation demonstrate the capability of the identification method to achieve a 
realistic model without prior knowledge of bushing properties. 

2 FINDING BUSHING DEFLECTIONS ON AN ASSEMBLED 
SUSPENSION 

When a vehicle is tested on a K&C test rig, the chassis is fixed on the ground and controlled forces are 
applied on wheels using 6 DoF actuators. During this test it is not possible to directly measure bushing 
deflection because functional surfaces are hidden. It is necessary to set up an indirect measuring method. 

Before the vehicle is set on the K&C bench, each part of the suspension is measured separately in sR , a 

coordinate system local to the solid part, and a geometric model of the solid is built. This model fully 
describes positions and orientations of bushings on the part using an homogenous operator. For each bushing, 
a local coordinate system is defined as represented in Figure 1. The position and orientation of this coordinate 

system relative to sR  is defined by the homogenous operator [ ]RsB [9]. If we consider a bushing that links 

part 1s  to part 2s , the position and orientation of this bushing on part 1 is defined by the operator [ ]1RsB , 

while the operator [ ]2RsB  describes its position and orientation on part 2. 
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Figure 1 : Representation of coordinate system local to a bushing and location of a bushing on a part  

In order to compute part location and orientation on the assembled suspension four reference points, also 
called "marks", are made on the part. These marks are small conic holes located on the part to ensure an 
easy coordinate measurement on the assembled suspension using a portable CMM, equipped with a 
spherical probe. The minimum number of points required to compute part location and orientation is three. 
However, the number of four marks has been chosen to bring reliability to the method in the event of 
measurement error. Before making measurements, marks should be made on the parts using a spotting drill. 
No precise location is required, provided the marks are sufficiently spaced from each other and accessible 
for coordinate measurement. Figure 2 represents, as an example, mark locations on the wishbone of a Mc 
Pherson suspension. After CMM measurement, each mark location is defined by a position vector: 

[ ] 411 //// <<= mzyx T
RsmRsmRsmRsmP , (1) 

where the subscript m  indicates the mark number. Once the suspension is assembled and the vehicle 
chassis is fixed on the bench, a load case is applied by the actuators on the wheels. Suspension reaches an 

equilibrium position and mark coordinates are measured in a global coordinate system 0R : 

[ ] 411 0/0/0/0/ <<= mzyx T
RmRmRmRmP  (2) 
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Figure 2 : Exemple of mark positioning on a suspension wishbone. 

These points are used to compute the part location and orientation in the assembled suspension in the 

form of an operator [ ]0/ RsRA . This is the absolute orientation problem [10] that consists for each part in 

minimizing the criterion:  

[ ] 2

0//0/
4

1 RmRsmRsRmC PPA −Σ= = . (3) 

Based on the operator [ ]0/ RRs
A , it is possible to compute the elastic deflection of the bushing represented 

in Figure 3 with : 

[ ] [ ] [ ] [ ][ ]10/1
1

0/2
1

2 sRRsRRssB BAAB −−=∆ . (4) 
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Figure 3 : Computation of bushing elastic deflection from part positions and orientations 

To define a force/deflection relation for bushing B , the operator [ ]B∆  has to be decomposed into 6 scalars. 

Txδ , Tyδ  and Tzδ  represents translational deflections, while Rxδ , Ryδ and Rzδ  represents rotational deflections 

with : 

[ ]


















=∆

332313

232221

131211

0001

aaa

aaa

aaa

Tz

Ty

Tx
B

δ
δ
δ

, (5) 

and 

.atan

,atan

,atan

11

21

33

13

33

23









=









=








 −=

a

a

a

a

a

a

Rz

Ry

Rx

δ

δ

δ

 (6) 

The coordinate measurement operation is repeated for maxl  different load cases. A load case is a set of 

forces applied to the wheel. It can be decomposed into three components: normal to the ground, lateral and 
longitudinal to the vehicle: 

[ ] [ ] max1 llFFF
T

vert
l

long
l

lat
l

wheel
l <<=F , (7) 
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where the subscript l  indicates the load case number. For each load case l  and each bushing b , it is 
possible to measure mark locations and to compute the deflection values of the bushing in each direction: 

[ ]TRzb
l

Ryb
l

Rxb
l

Tzb
l

Tyb
l

Txb
l

b
l

,,,,,, δδδδδδ=δ . (8) 

Each of these computed deflection values, Txb
l
δ ,  for instance, differ from the real deflection of the bushing 

real
Txb

l
δ ,  because of two distinct uncertainties. As assembly clearances are necessary to assemble the suspension, 

an uncertainty on geometric parameters of the elastokinematic model remains even after CMM part 

measurement [11]. This assembly error, named
0
,Txbδ , does not depend on the load case. The second error 

comes from the measurement uncertainty of the mark positions. This uncertainty leads to a random error on 
the computed location and orientation of parts and consequently on the bushing deflection values. This error, 

named 
rand

Txb
l
δ , , is different for each computed deflection. Its amplitude depends on the precision of the CMM 

used and the relative position of marks and bushings on parts. For any bushing deflection computed from 

experimental measurements, the result Txb
l

,δ  is composed of three terms:  

rand
Txb

l
Txb

real
Txb

l
Txb

l
δδδδ ,

0
,,, ++≅ . (9) 

Equation (9) is not strictly verified for angular deformation as a finite angular displacement is not a vector. 
However this approximation is acceptable if two of the three angular deflections remain small for every load 

case applied to the suspension. This is generally the case for Rxδ  and Ryδ , as a bushing is composed of two 

metallic cylinders (inner and outer sleeves shown in Figure 1) that bound possible angular displacements 
around X and Y axes. 

3 STIFFNESS IDENTIFICATION METHOD 

In this study, the model used to represent a bushing behaviour is a linear relation between the deflection 
parameters, described in equations (5) and (6), and the force and torque exerted by part 1 on 2 through 

bushing b . This relation is defined using six stiffness parameters: 
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We consider the most general case, where each stiffness parameter can be different from any other. To 
identify these stiffness parameters from the measured bushing deflections, it is necessary to estimate the 
values of forces and torques in this bushing for each load case applied on the suspension. This estimation can 
be done using an elastokinematic model of the mechanism. In the absence of information on the bushing 

stiffnesses, an initial estimation 0K  is assigned to all stiffness parameters of the model. This model allows the 

computation of an equilibrium position for each load case l , and the force and torque values in each bushing 

b  of the mechanism: 
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The following equations are written for the computation of the translational stiffness of bushing b  along 

the x  axis, named TxbK , . Computations of stiffnesses in the other directions are formulated in a similar way. 

The aim of the identification is to find the stiffness parameter TxbK ,  that best fits the relation: 

( )rand
Txb

l
TxbTxb

l
TxbTxb

l
δδδKF ,

0
,,,, −−= . (12) 

The force exerted on the bushing in the real suspension cannot be experimentally measured. The force 

computed using the elastokinematic model Txb
l F ,  is considered as a good approximation of the force in the 

real suspension. A new value of the stiffness parameter TxbK ,  is computed by performing a linear regression 

over the maxl  ordered pairs ( )Txb
l

Txb
l F ,, , δ , each pair corresponding to a load case. Performing the linear 

regression is here equivalent to minimizing the random error
rand

Txb
l
δ , . The stiffness parameter TxbK ,  and the 

assembly error 0δ  are given by: 
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where the bar symbol  stands for arithmetic mean over the load cases: 

( )∑
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1 l
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l a
l

a . (14)  

This stiffness computation method is limited by the quality of measurement. If the random error on the 
measured deflection is greater than the real deflection, the stiffness parameter given by equation (13) is false. 
The statistical tool used to detect this contingency is the correlation coefficient r  [12] defined by: 
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It is proved that the value of r  lies between -1 and 1. A value of r  near zero indicates that the variables 

Txb
l

,δ and Txb
l F ,  are uncorrelated. A negative value of r  occurs when the computed stiffness TxbK ,  is 

negative, which is a physical nonsense in our model. It is necessary to define a value for r  that defines the 
limit for the identifiability of the stiffness parameter. The authors chose to consider the stiffness value 
computed with equation (13) valid if r  is superior to 0.75. If this condition is not achieved, the parameter is 
considered unidentifiable and the previous value is maintained.  
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Figure 4 represents an example of linear regression for the identification of a translational stiffness. The 
presented values are experimental data obtained on a pseudo Mc Pherson suspension. The amplitude of the 
measured deflection is 0.3 mm while the precision of the CMM used to acquire this data is around 0.1 mm. In 
this example, data points are a bit scattered and the correlation coefficient of 0.78 is close to the limit but the 
computed stiffness is near the nominal stiffness of the bushing: 13 800 N/mm. 
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Figure 4 : Example of stiffness determination by linear regression. 

In most cases, bushings present a rotational symmetry around the Z axis. Consequently, their translational 
and rotational stiffnesses are identical along axes x  and y  and the number of unknown can be reduced from 

six to four per bushing. To compute a single radial stiffness TrbK , , a weighted average is performed on TxbK ,  

and TybK ,  as follows: 
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, (16)  

where xw  and yw  are the weighting factor chosen to represent the relative importance of stiffness 

parameters TxbK ,  and TybK , . These terms depend on the amplitude of forces and torques applied to each 

direction of the bushing as the stiffness computation is more significant and precise when important forces 
and torques are applied, and consequently when important deflections are observed. 

Initial estimation of the stiffness parameters can be very different from the real stiffnesses. As a 
consequence, force and torque computed in bushings may be significantly different than actual efforts in the 
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real suspension. An iterative process is necessary. All stiffness parameters of the elastokinematic model are 
modified according to the stiffnesses computed above. This new model is then used to compute new 
equilibrium positions for each load case and corresponding values of force and torque in the bushings. 

Setting up the model equilibrium and computing stiffnesses is repeated until the convergence of the 
computed stiffness values is obtained. This convergence is achieved when each stiffness value computed at 

the iteration 1+i  is equal to the stiffness computed at iteration i  with a relative toleranceε : 

εε +<<− + 11
,,

1,,

iTxb

iTxb

K

K
. (17)  

This criterion is achieved for one parameter in two cases. In first case, the parameter is not identifiable 
according to the correlation coefficient defined in equation (15). The second case, bushing deflections 

computed using model modδ  at iteration i  are similar to deflections in the real suspension. This affirmation is 

obtained from the force-deflection relation in the model and the definition of 1+iK : 

( )
( ) mod0exp1

0exp1

mod

δδδ
δδ

δ

≅−⇒≅

−=

=

+

+

ii

ii

i

i

KK

KF

K

F

. (18)  

There is no formal demonstration of the convergence of the iterative process, but the convergence was 
observed for each identification performed during the numerical experiments. Figure 5-a represents the 
diagram of this identification algorithm. 
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Figure 5 : Implementation of the identification algorithm in a software tool. 

4 NUMERICAL AND EXPERIMENTAL VALIDATION 

4.1 Algorithm implementation 

In order to validate the method presented, a program that performs automatically the iterative identification 
has been written using the Matlab programming language. The elastokinematic model is built using the 
commercial multibody simulation software ADAMS/Car. To compute equilibrium positions of the 
mechanism, this software resolves the Lagrange formulation of the equation of motion using a Newton-
Raphson type algorithm [13]. 

At the first stage, the ADAMS user interface is used to create the initial elastokinematic model. Part 
dimensions are given by CMM measures and stiffness parameters are set to an arbitrary initial value. For the 
following examples, this initial value is 104 N/mm for all translational stiffnesses and 104 N.mm/deg for all 
rotational stiffnesses. The set of load cases is also described at this stage. To identify as precisely as possible 
stiffness parameters, these load cases should apply a load on the suspension in different directions.  

When the Adams modelling phase is complete, a model file is created and sent to the ADAMS solver. This 
file contains all necessary information for the solver to compute an equilibrium position of the system for 
each load case. Once the simulation is done, the solver describes these equilibrium states in a result file. This 
file is automatically analysed and compared to measured bushing deflections.  A new set of stiffness 
parameters is computed as described in the previous section. 
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The model file is then updated in order to use these new stiffness parameters in the bushing models. A new 
simulation is then ordered to the solver with a DOS command specifying the model file to use. This loop is 
repeated until convergence of the parameters is reached. The implementation of the identification method 
using the ADAMS solver is represented in Figure 5-b. 

4.2 Validation on a pseudo Mc Pherson suspension using simulation data  
The first application of the presented method has been made on a pseudo Mc Pherson front suspension. 

This axle system has the particularity of using a virtual ball joint formed by the front and rear arm instead of a 
wishbone. In this study, the bushings to identify are the two lower bushings linking rear and front arm to the 
chassis, named respectively A and B in Figure 6. With ADAMS/Car, an elastokinematic model of this 
suspension is built from CMM measurements made on a real suspension. A set of load cases is designed to 
provide a wide range of solicitations to the suspension. This load case set, described in Table 1, is a succession 
of vertical, lateral and longitudinal loads of various magnitudes. 

 In the first step, stiffness parameters are set according to the effective stiffness in the real suspension. This 

first model is taken as a reference and bushing deflections expδ  given by the simulation are used as input data 

for the identification. To perform the identification, a copy of this reference model is modified to set all 
stiffness parameters of the bushings to the same initial estimation: 10 000 N/mm for translational stiffness 
and 10 000 N.mm/deg for rotational stiffness. With a tolerance ε  set at 0.01, convergence is achieved in 24 
iterations. 

Cornering
force

Bushing B

Bushing A

Braking force
 

Figure 6 : elastokinematic model of the pseuso Mc Pherson suspension. 

Throughout the identification process, it is verified that stiffness parameters converge to a value near the 
reference stiffness. However, at the end of the identification process most parameters are not exactly equal to 
the reference stiffness. This can be explained by the fact that several different sets of stiffness parameters can 
lead to a similar global behaviour. Consequently, some parameters cannot be identified independently from 
each other. 

For instance, Figure 7 represents the evolution of computed stiffness of bushing A. In this graph, each 
computed stiffness is divided by the reference stiffness in order to visualise the proximity of the identified 
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stiffness to the ideal value with a non dimensional criterion. We can see that the translational stiffness along 
the X axis is correctly identified at the first iteration. This is an influent parameter for the suspension. On the 
other hand, the bushing is not subject to rotational deformations along the X axis. Consequently the 
corresponding rotational stiffness is not identifiable and the initial estimate is maintained. 

 Ktx (n/mm)  Kty (n/mm)  Ktz (n/mm)  Krx (n.mm/deg)  Kry (n.mm/deg)  Krz(n.mm/deg)
Reference stiffness 13875 13875 1370 11000 11000 4000

Inital estimation 10000 10000 10000 10000 10000 10000
Final Identified Stiffness 13959 12318 1180 10000 9223 3550

Ki/Kr 1.01 0.89 0.86 0.91 0.84 0.89
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Figure 7 : Comparison of identified parameters to reference stiffness at each iteration of the identification 
process in bushing A 

4.3 Validation using simulation data on an OCP axle 
In order to test the robustness of this method to measurement uncertainties, and its reliability for complex 

mechanisms, the identification procedure was applied to the Optimized Contact Patch system. This patented 
multilink rear suspension [7,8] is characterized by an additional degree of mobility in relation to the camber 
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angle of the two wheels, in comparison with conventional axes. The final target consists in having negative 
camber when cornering, merely by the application of the ground loads on the wheel bases. This negative 
camber ensures the best tyre running conditions and consequently improved road holding properties. Figure 
8-a presents a CAD view of this axle and Figure 8-b the corresponding elastokinematic model built with 
ADAMS/Car. 

b- Elastokinematic model of 

the OCP suspension

B6 B7 B5

B4 B10B8 B9B1 B11 B12B2B3

a- Digital mock-up of 

the OCP suspension

Cornering force  

Figure 8 : OCP rear axle, CAD and ADAMS/Car model. 

In this identification process, the stiffnesses of twelve bushings on the left side of the axle have to be 
identified simultaneously under the assumption of axis symmetrical geometry, corresponding to 48 unknown 
parameters. A first model is used to give the reference behaviour. Four points are created on each part of the 
model. These points represent the marks needed to compute bushing deflections in a real suspension as 
described in section  2. For each load case, the coordinates of marks on the reference model are given by the 
simulation software. 

In order to test the influence of measuring uncertainties on the identification, a random component is 
added to each coordinate. This noise is chosen with a normal distribution and a standard deviation of 0.05 
mm. This value simulates measurement uncertainty that can be achieved with a typical portable CMM, making 
measurements when accessibility is difficult. These inaccurate coordinates are then used to compute part 
locations and bushing deflections as described in section  2.  
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The model to identify is geometrically identical to the reference model, but all stiffness parameters are set 
to 10 000 N/mm or 10 000 N mm/deg. Due to the model's complexity and the presence of noise, the 
convergence of the identification process is slower. In order to achieve identification in a reasonable number 
of iterations, the tolerance on convergence ε  is set at 0.05. Convergence is then achieved after 50 iterations. 
During this identification, seventeen parameters are considered as non identifiable and keep their initial value. 

a - Camber angle under cornering force.
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b - Steer angle under cornering force.
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Figure 9 : Wheel behaviour under cornering force for OCP models with different stiffness parameters 
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To estimate the quality of the identified model, wheel behaviour of the reference and identified models are 
compared for standard load cases such as vertical wheel travel, braking or cornering events. As an example, 
the graphs in Figure 9 present variations of the wheel orientation while lateral forces are applied on the wheel 
bases. Two supplementary models are added to the comparison. The model with the initial estimate of 
stiffness parameters indicates the improvement brought about by the identification. The model identified 
without simulated measuring noise allows us to verify the identification accuracy in the numerical experiments 
by considering a perfect accuracy of mark positions. 

Figure 9-a represents the camber angle variation versus cornering forces applied on the wheel bases. This 
behaviour is especially critical for this suspension as it provides extra road holding capability to the vehicle 
during cornering events. The initial estimation of stiffness parameters has been made without any prior 
functional analysis. As a consequence, the behaviours of the reference model and the model with initial 
estimation of stiffness parameters are totally different. After identification in the presence of noise, variation 
of the camber angle is very close to the reference model. It is verified that the remaining difference is a 
consequence of the noise because the model identified without noise shows behaviour similar to the reference 
model. 

Figure 9-b represents the steer angle variation versus cornering forces applied on the wheel bases. In this 
case, the influence of measuring uncertainties is more significant. Variation of the steer angle is reduced and 
may be influenced by very small bushing deflections. The improvement of measuring precision is a key factor 
to achieve good correlation for this particular behaviour. 

4.4 Validation using experimental data on a pseudo Mc Pherson suspension 
Experimental validation for the proposed method was made on a pseudo Mc Pherson suspension. This 

suspension is identical to the one presented in section  4.2. Figure 10 reproduces a photo of the experimental 
setting. Parts of the suspension (c) are attached to a mechanically welded frame that reproduces the original 
vehicle attachment points (b). This frame is fixed on the K&C test rig and the spindle is linked to the bench 
actuators (e). While applying controlled forces and torques, the K&C test rig measures the wheel motion with 
a computer vision system (d). The set of load cases applied on the spindle for the identification is described in 
Table 2. The portable CMM (a) is fixed on the test rig in front of the suspension to allow mark coordinate 
measurement.  
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Figure 10 : Experimental setting of a pseudo Mc Pherson suspension on a K&C testbench. 

Before assembling the mechanism, bushings of the front and rear arms (bushings A and B as defined in 
Figure 6) have been measured separately. They are used to build the most representative elastokinematic 
model possible prior to identification. Despite this fact, some differences remain between the behaviour of the 
model and the behaviour measured on the K&C test rig.  

Identification is performed using 10 000 N/mm and 10 000 N mm/deg as initial stiffness estimation on 
both bushings. Identified stiffnesses are compared to nominal stiffnesses in Table 3. The main difference 

between these parameter sets lies in the translational stiffness of bushing A. The nominal value of txK  is 

13 000 N/mm while the identified value is 7 300 N/mm. Two reasons can be given for this major difference. 
First, the effective stiffness may be different from the nominal value because of manufacturing dispersion, 
environmental parameters (temperature …), rubber aging and rubber behaviour under multi axial load. 
Secondly, the identified parameter represents a global stiffness that takes into account deflections of the 
bushing and of surrounding parts subject to elastic deflections (bolted assembly, chassis, suspension arm).  

This modification explains the improvement of the behaviour that can be seen in Figure 11-a. This graph 
presents the steer angle versus cornering force applied on the wheel,and a precise correlation is observed for 
the identified model. The hysteresis that can be seen in this graph indicates the presence of dry friction and a 
plastic behaviour of rubber elements. These phenomena are not represented in our model and should be 
taken into account for a better accuracy. 

The graph in Figure 11-b presents the steer angle versus braking force.  The identified model is closer to 
the real behaviour than the original model. However, correlation is not perfect. This particular behaviour 
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shows the limits of the model based on the assumption of non deformable parts. It is verified that 
representing the elastic deformation of the tie rod improves the correlation. 

The wheel behaviour during vertical motion has also been tested. For this loading, a good correlation was 
noticed between the real axle and the unidentified model, and the stiffness identification did not bring 
significant changes. In that case, wheel behaviour depends mainly on the geometry of the parts and on the 
suspension spring. 

This experimental validation demonstrates that the proposed identification method allows the definition of 
a representative elastokinematic model of a suspension without prior information on bushings. 
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a - Steer angle under cornering force.
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b - Steer angle under braking force.
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Figure 11 : Comparison of experimental data and elastokinematic models. 

5 CONCLUSION 

In this article a new method for stiffness parameter identification in vehicle suspension mechanisms is 
proposed. This method is based on the observation of each part displacement during a Kinematic and 
Compliance test. The only required additional device is a portable CMM. The algorithm used is voluntarily 
simple and can be applied to any type of suspension. 
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This identification method has been tested using numerical simulation on two different suspension 
architectures. These experiments showed that this method was capable of identifying a large number of 
parameters simultaneously even in the presence of measuring uncertainties. Experimental validation 
demonstrated that identification brings a significant improvement of the correlation between a real suspension 
and its elastokinematic model. 

The main limitation of this method remains in its capability to measure precisely coordinates of reference 
points in the mechanism. When a bushing deflection is smaller than the measuring precision, the 
corresponding stiffness may not be identifiable. 

The other limitation comes from the use of multibody simulation software to compute forces exerted on 
the bushings. As a consequence, a time consuming iterative process is necessary to compute the stiffness 
parameters. Based on the hypothesis of linear force-deflection relation, the direct solution of this 
identification problem is possible in a non iterative form. This solution will be the focus of a future work. 
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Table 1 : Set of load cases used to numerically test the identification method 

Load case # Vertical force (N) Lateral force (N) Longitudinal force (N) 

1 1500 0 0 

2 3000 0 0 

3 4500 0 0 

4 6000 0 0 

5 7500 0 0 

6 4500 -4000 0 

7 4500 -2000 0 

8 4500 2000 0 

9 4500 4000 0 

10 4500 0 -4000 

11 4500 0 -2000 

12 4500 0 2000 

13 4500 0 4000 

 

Table 2 : Set of load cases using for the experimental validation of the identification method 

Load case # Vertical force 
(N) 

Lateral force 
(N) 

Longitudinal force 
(N) 

1  4500 0 0 

2 5980 0 0 

3 7500 0 0 

4 3030 0 0 

5 1510 0 0 

6 4600 1000 0 

7 4340 -1000 0 

8 4480 0 1000 

9 4470 0 -1000 

10 5873 1000 0 

11 5950 -1000 0 

12 5920 0 1000 

13 5920 0 -1000 

14 3370 1000 0 

15 2780 -1000 0 
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16 3040 0 1000 

17 3090 0 -1000 

 

Table 3: Nominal and identified bushing stiffnesses of the pseudo Mc Pherson suspension. 

Bushing A 
 Ktx 

(n/mm) 
 Kty 

(n/mm) 
 Ktz 

(n/mm) 
 Krx 

(n.mm/deg) 
 Kry 

(n.mm/deg) 
 Krz 

(n.mm/deg) 
Nominal stiffness 1300 13000 1370 11000 11000 4000 

Identified Stiffness 7298 10000 10000 10000 6831 5066 
       

Bushing B 
 Ktx 

(n/mm) 
 Kty 

(n/mm) 
 Ktz 

(n/mm) 
 Krx 

(n.mm/deg) 
 Kry 

(n.mm/deg) 
 Krz 

(n.mm/deg) 
Nominal stiffness 310 2400 180 4500 1100 1600 

Identified Stiffness 365 500 10000 10000 3404 4823 
 


