Evaluation of a 4-Degree of Freedom Parallel Manipulator Stiffness

Charles CORRADINI
Jean-Christophe FAUROUX
IFMA/LaRAMA, Clermont-Ferrand, France

Olivier COMPANY
Sébastien KRUT
LIRMM/CNRS, Montpellier, France

11th World Congress in Mechanism and Machine Science
April 1-4, 2004
Tianjin, China
Introducing H4 parallel robot

- H4, a robot built at LIRMM/CNRS
- Parallel architecture with four legs
- 4 DDF : 3 translations, 1 rotation
- Advantages :
 - Accelerations up to 10 g
 - Ideal for « pick and place » operations
- H4 prototype must be optimized
- Re-design for stiffness
 - Long arms
 - Stiffness for improving accuracy
- Partnership with LaRAMA / IFMA
- In ROBEA Max CNRS program
H4 kinematics

- 6R and 16S joints
- 4 DDF: 3 translations, 1 rotation
- Architecture with 4 legs R-(S-S)$_2$ = actuator + forearm + 2 bars
- Spatial parallelograms (S-S)$_2$ plane in normal conditions
- 4 rotative actuators
Articulated Travelling Plate

- An articulated Travelling Plate (TP)
- H-shaped
- End effector:
 - Connected to central bar: maximum rotation of +/- 45° around Z
 - Through a geared rotation amplifier (4:1 ratio) for 180° capability
Measuring Displacements

- External force on TP
- From 10 to 50 N
- 3 displacements on TP
- 3 dial indicators
- No rotation measurements for the moment
- Only translational stiffness
- Actuators are powered
- TP position controlled
- Pose at 45°
Experimenting
Measuring Material Properties

- Bars from 3rd party provider, no specifications
- Need to evaluate stiffness for FEM study

Specific fixtures

<table>
<thead>
<tr>
<th>Part</th>
<th>Material</th>
<th>Elasticity modulus</th>
<th>Cross section (dimensions in mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arm</td>
<td>Aluminium 2024 series</td>
<td>74 000 MPa</td>
<td>Square tube with round corners (Side 25, Thickness 2.5, Ext radius 3, Int. Radius 1)</td>
</tr>
<tr>
<td>Bar</td>
<td>Carbon Epoxy</td>
<td>57 700 MPa</td>
<td>Round tube (External diameter 10.4, Thickness 2)</td>
</tr>
</tbody>
</table>
FEM Beam Model

- Simple beam model with constant cross section
- 1 element per beam
- 2 nodes per beam
- 3 displacements and 3 forces per node
- FEM = material strength theory in that case
Fast articulated model

Displacement relaxations:
- S joint: translations are the same on each beam but not rotations
- R joint: all the movements are the same but not rotation around joint axis

S – S links:
- Beam becomes bar element with no self rotation around longitudinal axis for matrix inversion
Force along Y

- Presentation
- Experimenting
- FEM Analysis
- Results
 - Force on XYZ
 - Curves
 - Coupling
 - Stiffness
- Conclusion

11th World Congress in Mechanism and Machine Science, April 1-4, 2004, Tianjin, China
Force along Z

- Presentation
- Experimenting
- FEM Analysis
- Results
 - Force on XYZ
 - Curves
 - Coupling
 - Stiffness
- Conclusion
Comments on curves: shape

Results are rather linear

- FEM simulated results are perfectly linear
- Measured results are rather linear (except experimental errors)
- Curves start at origin
Comments on curves: relative positions

- FEM results are under experimental results but very close
 - Dotted lines are generally under plain lines
 - Justification: measurements include geometrical defaults, clearance, joint stiffness
 - An exception: \(D_Y \) simulated = 2 \(D_Y \) experiment
 - Justification: experimental error
Comments on curves: coupling

- **Coupling**: a force along one direction may generate a displacement along another direction

- A force along X generates displacement along X and a bit on Z
- A force along Y generates only displacement along Y -> No coupling on Y
- A force along Z generates displacement mostly along X, then Z
Understanding coupling

- With F_x, **coupling** between X and Z

- With F_y, **no coupling**
Compliance matrices

- One pose at 45°

- Experimental compliance matrix

- FEM compliance matrix

- Experimental -FEM : quite correct except one big difference
Conclusion

• One pose at 45°, two methods for getting stiffness
 • Experimental + FEM
 • Results are in close agreement
• H4 has different stiffnesses on X Y Z
 • Strong coupling between X and Z
 • No coupling along Y

To be done...

• Stiffness maps
• Re-design for stiffness

Videos