

# Qualitative Design of Compact Transmission Mechanisms with Standard Components

Jean- Christophe FAUROUX

Laboratoire de Recherches et Applications en Mécanique Avancée







## Introduction

- General context
   3D machine design from written specifications
- Purpose of this work
  - A software wizzard for preliminary design of transmission mechanisms
- Type of mechanisms
  - High ratio transmissions
  - Multi- stage mechanism
    - Which stage?
    - In what order?
    - Where in space?
- Summary
  - 1 Basic concepts
  - 2 Synthesis method
  - 3 Concluding example







## Context

#### References :

- [Chakrabarti and Bligh 96]
   Synthesis of transmission mecanisms with multiple I/O
   Combination of mechanical modules
   Orthogonality restrictions
- [Kota and Chiou 92]
   Synthesis method for compound mechanisms
   Qualitative matrix representation
- [Joskowicz and Sacks 93]
   Kinematic analysis of gear boxes and transmissions
- [Forbus, Nielsen and Faltings 91]
  Qualitative kinematics and dynamics for analysis of complex mechanisms

#### Previous works :

- [Fauroux and Sartor 97]
  Qualitative synthesis method for exploring domain of feasible solutions
- [Fauroux, Sanchez, Sartor and Martins 98]
   Fuzzy logic evaluation of solution
- The idea: Improving synthesis method for transmission mechanisms
  - Including qualitative analysis of solutions for getting a better characterization

## **Method Architecture**





- A method improving creativity
- Exhaustive exploration of feasible solutions



- Qualitative solutions are too vague
- Many equivalent good solutions How to differentiate them?

## **Qualitative Solutions**

- Qualitative solutions are too vague
  - Qualitative shape of parts
  - Relative ordering of parts (connectivity)
  - Not the final dimensions
  - Not the final orientations



- Good qualitative solutions are often not easy to differentiate
  - Qualitative solutions give a good start to designers...
  - ...but need to be enriched in information

**Example :** 1008 solutions and 8 rated N° 1 Which to choose ?

Idea : try to reproduce human mind





## **Standard Orientations**

- Enriching the model by orientating stages
- 4 standard values : 0°/90°/180°/270°
  - Strong assumption but corresponding to the vast majority of industrial mechanisms
  - Permits a fast exploration of mechanism layouts
  - May be refined later







- 2 angles
- 4 values per angle
- 16 combinations



# **Standard Orientations**



# **Mechanism Compactness**

- Compactness: a way for differentiating solutions
- Compact = fits the available space
  - No spoilt space inside
  - No big parts crossing outside
- Not Compact
  - Space is horizontal
  - Mechanism is vertical
  - Mechanism is totally outside



#### Compact

- Mechanism has good overall orientation
- Mechanism has good proportions



# Standard Mechanisms (1/2)

#### Semi- dimensioned mechanisms

#### **Example:** cylindrical gear

- Diameters have given values > Fixed ratio
- Pitch diameter or tooth width may be kept undefined

#### Cylindrical gear sets

- Opposite shafts / Shafts on the same side
- Ratios 1, 2 or 4
- Dimensions: 4R, 6R, 10R







#### Bevel gear sets

- Two shaft settings for reversing sense of rotation
- Ratios 1, or 2
- Big wheels are expensive so ratios are limited



# Standard Mechanisms (2/2)

Internal cylindrical gear sets

- Opposite shafts / Shafts on the same side

- Ratio 2 gives part interference with shafts on the same side

- Ratios 3 or 5

Dimensions: 6R or 10R

With same overall dimension, internal gear sets reduce more
 than external ones





#### Worm gear sets

- Great ratios but efficiency sometimes small
- Two shaft settings
- Ratios 8, 16 or 32
- 4 threads / 32 teeth, ratio 8, efficiency 85%
- 1 thread / 16 teeth, ratio 16, efficiency 75%
- 1 thread / 32 teeth, ratio 32, efficiency 67%
- Number of threads ↑ ⇒ ratio ↓ but efficiency ↑
- Number of teeth  $\uparrow$   $\Rightarrow$  ratio  $\uparrow$  , dimensions  $\uparrow$  but efficiency  $\downarrow$







# **Exploration**

- Combinatorial exploration
- Global hybrid configuration counter :
  - Stage nature (base N<sub>MaxM</sub>)
  - Stage orientation (base 4)



# **Elimination Rules**

- The domain of configurations increases greatly
- Elimination rules can be refined
  - Limitation of the number of stages with orthogonal shafts
  - Good efficiency

 $\eta_C \geqslant \eta_S$ 

with  $\eta_C = \prod_{i=1}^{N_{MaxS}} \eta_i$ 

Good speed ratio  $U_S - \Delta_U \leqslant U_C \leqslant U_S + \Delta_U$  with  $U_C = \prod_{i=1}^{N_{MaxS}} U_i$ 

$$U_S - \Delta_U \leq U_C \leq U_S + \Delta_U$$

Good rotation sense

Good absolute orientation of output shafts

C = Calculated S = Specified

$$\vec{Z_{OC}} = \vec{Z_{OS}}$$
 with  $\vec{Z_{OC}} = \prod_{i=1}^{N_{MaxS}} \mathbb{R}_i \vec{Z_{IC}}$ 



$$\gamma = (\overline{P_{IC}P_{OC}}, \overline{P_{IS}P_{OS}}) < 90^{\circ}$$

with 
$$P_{OC} = \prod_{i=N_{MaxS}}^{1} \mathbb{C}_i P_{IC}$$

Qualitative and non dimensional



# Sorting Criteria (1/21/2)

- Best configurations should be sorted first
- Five performance functions
  - Mechanism nature quality
    - Power transmission ability
    - Fabrication cost
    - Mounting cost
  - Overall proportion quality  $F_P = \left| \frac{a}{A} \frac{b}{B} \right| + \left| \frac{b}{B} \frac{c}{C} \right|$

$$F_{P} = \left| \frac{a}{A} - \frac{b}{B} \right| + \left| \frac{b}{B} - \frac{c}{C} \right|$$

- From 0 (perfect fitting)
- To infinity (infinite extension along one axis)





# Sorting Criteria (1/22/2)

Five performance functions



$$F_{I} = (|NX_{IC} - NX_{IS}| + |NY_{IC} - NY_{IS}| + |NZ_{IC} - NZ_{IS}|)/3$$

with

$$NX_{IC} = \frac{X_{IC} - X_{MinC}}{X_{MaxC} - X_{MinC}}$$
 and  $NX_{IS} = \frac{X_{IS} - X_{MinS}}{X_{MaxS} - X_{MinS}}$ 

- $NX_{IC}$  represent the non dimensional position in % of  $P_{IC}$  along the specification box
- $F_{i} = 0$  for an input perfectly fitting specifications
- $F_1 = 1$  for an input diagonally opposed to requirements

### Output location quality



$$F_{IO} = 1 - \cos(\gamma)$$

- $F_{IO}$  = 0 when relative I/O location perfectly fit specifications
- F<sub>i</sub> = 1 when I/O is very far from expected



3

# **Example**

- Design of the following mechanism :
  - Orthogonal I/O shafts
  - Efficiency > 90%
  - Speed ratio around 47
- Reversing sense
- No more than 4 stages



#### Results :

- 10 240 000 combinations
- Less than 5 seconds on a PIII 650 Mhz
- No solutions with  $\Delta U = 0$
- 5723 solutions with  $\Delta U = 1$  (space reduced by a factor 2000)
- Most of time spent in Exploration and Elimination phases
- High efficiency of **qsort** method (average running time N.log(N))

**Example :** 10<sup>6</sup> combinations sorted in 10 seconds

- Time may be cut down by changing elimination rule order

**Example :** Orientation rule from first to last place Computing time from 45 to 4 seconds









## Conclusion

A new method for designing transmission mechanisms
 with standard components and standard orientations

#### Advantages

- Standard components: more precise and **realistic** particularly for transmission ratio and efficiency
- Solutions are **better defined** with more qualitative information
- Realistic diameters and part orientations
- Compact mechanisms are exhibited
- Divides by **several thousands** the initial combination space

#### To be Improved

- Elimination rules may be refined
- Sorting criteria may be refined
- Faster computations with large databases
- An efficient tool for suggesting ideas to designer with exhaustivity

