Conception optimale de mécanismes :
application aux réducteurs à engrenages

Compte-rendu Hanovre

Point sur :
Les engrenages
Entrainements et Systèmes
Société d'édition : P.P.I.
7, rue des Petites Ecuries
75610 PARIS
Tél. : 01 42 47 12 05
Fax : 01 47 70 33 84
S.A. au capital de 2 950 000 F
Siége : 722 01 126 14 00 29
Code NAF : 221 E
Président-directeur général :
Henri THIRON
Directeur de la publication responsable de la rédaction :
Henri THIRON
Directeurs commercial et administratif :
Jacques LEROY
Patrick HORDE
Rédacteur en Chief :
Christian DESMOULIN
Chefs de Publicité :
Claire DURIN
Claire PILONNEAU
Maquettiste :
Christine ROQUE
Jérôme LAHEURTE
Bénédicte BOUQUARD
Service Petites annonces :
Tél. : 01 42 02 24 33
Tarifs 99
Prix d'un numéro : 66 F
Abonnement (1 an) :
France : 398 F TTC - Etranger : 460 FF
Abonnement à :
Entrainements et Systèmes
Service Abonnements :
BP 19 - 89100 CHARNY
Tél. : 03 86 86 64 46 - Fax : 03 86 63 79 43
Prochain Press International
Avenue de la Grande Ceinture
94200 Vitry-sur-Seine
FRANCE
Tél. : 01 45 82 44 00 - Fax : 01 45 82 44 01
Entrainements et Systèmes : Editions Communales
Imprimerie CLERCA
B.P. 192 - 53000 Laroque-sur-Var
Tél. : 03 86 30 31 65
Fax : 03 86 30 31 66
SOMMAIRE
EDITO
5
A NOTER
6
TECHNIQUE
CONCEPTION OPTIMALE DE MÉCANISMES
Application aux réducteurs à engrenage
10
LE POINT SUR
Les engrenages
18
EXPOSITION
TECHNIQUES D'ENTRAÎNEMENT
Hanovre 99 : le grand rendez-vous de la profession
21
TECHNIQUE
Quel guidage à rouleaux choisir pour la machine-outil?
28
ÉCONOMIE
COMPOSANTS MÉCANIQUES ACTIFS
1999 : une année incertaine
32
SÉLECTION
36
DOC'INFOS
39
Répertoire des annonceurs
48
Bulletin d'abonnement
48
Service lecteur - Coupons-réponse
41-42
Documents de couverture :
Manifold Indexing - Leroy Somer

Entrainements & Systèmes - N°4 - MAI/JUIN 1999
Conception optimale de mécanismes

Application aux réducteurs à engrenages

Introduction
D'une manière générale, nous nous interrogeons sur l'assistance qui pourrait être apportée à un concepteur néophyte cherchant à concevoir, en partant de la feuille blanche, le meilleur mécanisme répondant à son problème. On constate en effet qu'il existe peu de méthodes pour assister le concepteur en début de conception.

D'un côté, on trouve de nombreux ouvrages répertoriant des mécanismes déjà connus. Les connaissances qu'ils nous livrent sont de nature historique (9), pédagogique (3) voire même encyclopédique (1), (2). De l'autre, on dispose de règles et de méthodes de conception pour une grande variété de composants mécaniques pris séparément: engrenages (7), courroies, roulements, etc.

Le concepteur, s'il ne trouve pas de solution toute faite à son problème, est obligé d'en inventer une. Notre idée consiste à créer un outil capable, par étapes successives, de construire des solutions acceptables et de plus en plus détaillées, jusqu'à l'obtention d'un mécanisme final optimisé. Le travail de définition passe par des étapes de synthèse topologique (dans l'esprit des travaux de Freudentstein (6) ou de Subramanian (10)) et par des étapes de synthèse dimensionnelle, où l'on optimise la solution trouvée précédemment (8).

I - Présentation générale de la méthode de conception optimale

A - Types de mécanismes concernés
Nous nous intéressons à la conception des mécanismes de transmission de mouvement rotatif. Ils ont l'avantage d'être très répandus dans la technologie mécanique mais, paradoxalement, de ne jamais se ressembler, car les dispositions constructives sont extrêmement variées et les applications multiples. En fait, comme leur fonction première (transmettre le mouvement d'un lieu à un autre en le transformant éventuellement) dépend étroitement du contexte dans lequel ils sont utilisés, ils doivent respecter un cahier des charges toujours changeant et obligent ainsi le concepteur à un travail de re-conception pétuit. Ils conviennent donc à merveille pour illustrer ce que pourrait être un outil d'aide à la conception optimale de mécanismes.

Définissons maintenant nos notations. Pour nos calculs, nous considérons que le mécanisme doit contenir dans une enveloppe parallélépipédique définie par les points extrêmes $P_{n}$ et $P_{m}$ (Fig. 1 a). L'arbre d'entrée passe par le point $0_{1}$ et est dirigé par le vecteur $Z_{1}$. De même, l'arbre de sortie est défini par $0_{2}$ et $Z_{2}$.

Les mécanismes de transmission de mouvement rotatif ont aussi pour particularité leur structure (Fig. 1 b)): ils sont constitués d'une suite de $N_{e}$ étages, chacun étant un mécanisme élémentaire. Les étages sont reliés les uns aux autres par des arbres de transmission et sont tous fixe par rapport au bâti. Le graphe de liaison des mécanismes de transmission dont nous allons traiter ressemble à une suite de bouches chaînées (Fig. 2), d'où le nom de chaîne de transmission. A partir de maintenant, nous nous limiterons au cas d'étages de réduction à engrenages même si de nombreux autres types de mécanismes ont un graphe de liaison compatible avec notre méthode de transmissions à chaînes, à courroies, joints de cardan, nombres types de joints.
homocinétiques à plan bissecteur, etc).

**B - Structure générale de la méthode**

Nous proposons une méthode structurée en plusieurs étapes (Fig. 3). Les étapes topologiques ont pour but de définir de manière qualitative certaines caractéristiques non dimensionnelles et fondamentales du mécanisme. De plus, elles créent ou modifient la nature même des formes du modèle 3D représentant la solution. Ainsi, pour notre exemple, l'étape 1 crée la Version 1 du modèle, l'étape 4 le complète pour obtenir la Version 2, etc. Elles font appel à un raisonnement de type expert et à des bases de règles. Quant aux étapes dimensionnelles, elles sont nécessairement suite à une étape topologique. Elles consistent à déterminer ou modifier des paramètres dimensionnels du modèle 3D, par un calcul direct ou par des méthodes d'optimisation non linéaires. Dans l'exemple traité, l'étape 2 permet de calculer les orientations des étages ainsi que certaines dimensions. C'est l'étape 3 qui parachève la définition du modèle V1.

**II - Etape topologique: génération de modèles 3D admissibles**

A l'issue de cette étape, on doit obtenir une ou plusieurs solutions sous forme d'un modèle 3D paramétré et orienté objet, géré par un module de CAO. La création des modèles est confiée à un module de calcul indépendant, communiquant par échange de message avec le module CAO. Nous présentons ici l'algorithme qui pilote ce module de calcul. Il s'agit, à partir d'un cahier des charges donné, de déterminer de façon qualitative le nombre, la nature et les orientations (partiellement) des étages nécessaires pour construire le mécanisme de transmission global.

Le cahier des charges imposé au début de cette étape 1 porte essentiellement sur l'aspect fonctionnel et qualitatif du problème. Nous avons donc retenu des caractéristiques ne faisant pas intervenir de dimensions. Cer-
Fig. 4 - Les dispositions possibles des arbres d’entrée/sortie.

Tab. 1 - Un exemple de base de mécanismes à engrenages.

Fig. 5 - Algorithme pour l’étape topologique 1: structure en trois phases.

taines d'entre elles sont assez générales et pourraient facilement être transposées aux mécanismes dotés d'arbres en translation (par exemple bielle-manivelle):
- Nombre maximal d'étages dans le mécanisme global;
- Rendement minimal souhaité $\eta_{CDC}$;
- Orientation relative des arbres d'entrée/sortie du mécanisme global $\alpha_{CDC}$.

Par contre, les paramètres suivants sont plus spécifiques des mécanismes à engrenages:
- Rapport de réduction global (vitesse d'entrée $U_{CDC}$);
- Sens de rotation de la sortie globale par rapport à l'entrée globale (+/-).

A - Base de mécanisme à engrenages

Nous retiendrons 6 types principaux d'engrenages:

cylindrique à denture externe, cylindrique à denture interne, conique, gauche, roue-vis et épicycloïdal. Ces engrenages types sont déclinés en 18 mécanismes élémentaires qui consitueront notre base de mécanisme pour cet exemple (Tab. 1).

Les déclinaisons sont faites de plusieurs façons:
- L'adjonction ou non d'un dispositif inverseur de sens de rotation. Pour les engrenages cylindriques, on rajoute une roue parasite, ce qui modifie la topologie de l'engrenage et justifie qu'on en fasse un nouveau mécanisme à part entière. Pour les engrenages gauches et roue-vis, le sens de rotation dépend uniquement de l'angle d'inclinaison des dentures ou du filet. Or, à ce stade précoce de la conception, on n'a pas encore abordé le problème de la définition des dentures. On considérera donc, pour l'instant, que ces mécanismes peuvent délivrer une rotation dans n'importe quel sens.

- La position des arbres d'entrée/sortie. Ils peuvent être opposés ou du même côté pour les engrenages cylindriques. Cette distinction s'impose, car elle conduit à des dispositions spatiales très différentes des étages situés en aval et peut avoir de grandes conséquences sur l'encombrement global du mécanisme. Pour l'engrenage conique, la disposition des arbres influence aussi le sens de rotation.

- Les engrenages épicycloïdaux, bien que non représentés dans la table, sont déclinés dans les quatre types élémentaires.
décrits dans l’ouvrage de M. Henriot (7).
Remarque: les engrenages coniques et gauches peuvent avoir un angle - autre que ceux de 90° ou 270° représentés dans Tab 1. Chacun de ces mécanismes est associé à un modèle 3D pré-calculé, entièrement paramétré et muni de ses lois cinématiques. Nous pourrons donc facilement connecter ces étages pour construire le réducteur global, lui-même doté de sa loi cinématique obtenue par composition.
Les mécanismes élémentaires sont aussi répertoriés dans une base de données, qui stocke pour chacun d’entre eux les grandeurs suivantes:
- **Rendement moyen** $\eta_{\text{moy}}$ Cette valeur dépend étroitement des matériaux et de la qualité des usinages. Le concepteur rentre dans la base de mécanismes des valeurs qui lui semblent réalistes en tenant compte de ses moyens de fabrication.
- **Plage d’angles entre les arbres** $[\alpha_{\text{min}}, \alpha_{\text{max}}]$ mesurée selon la convention de signe de la figure 4(d).
- **Plage de rapports de réduction** $[W_{\text{min}}, W_{\text{max}}]$ C’est à l’utilisateur de définir le rapport maximum des engrenages dont il dispose.
- **Sens de rotation** de l’arbre de sortie par rapport à l’arbre d’entrée (+, - ou indéterminé).
- Présence (ou non) d’un **dispositif inverseur de sens** (boîtier 1/0).
- **Coefficients caractéristiques** du mécanisme (notes sur 100). Pour l’exemple des engrenages, il nous a paru intéressant d’évaluer les aptitudes de chaque mécanisme élémentaire selon trois critères: l’aptitude à transmettre de fortes puissances, le coût de fabrication et la simplicité de montage.
Bien évidemment, le nombre et la nature de ces critères peuvent être modifiés sans difficulté. Ils doivent être choisis afin de hiérarchiser les mécanismes de base en mettant en valeur leurs avantages et inconvénients respectifs. Évidemment, l’attribution de notes réalistes à chaque mécanisme n’est pas une tâche simple. Nous proposons une alternative à la notation quantifiée en faisant appel à une méthode de logique floue (4).

**B- Génération de solutions potentielles**

Nous avons estimé que l’algorithme (Fig. 5) devait obéir aux principes suivants:
- **Exhaustivité**: il s’agit de construire par exploration combinatoire (Phase 1) toutes les combinaisons d’étages possibles à 1, 2, ..., $N_{\text{max}}$ étages (avec $N_{\text{max}}$ le nombre maximal d’étages souhaité). Le problème est qu’on assiste très vite à une explosion combinatoire lorsque le nombre de mécanismes élémentaires $N_{\text{max}}$ augmente. Pour contourner ce problème, on peut développer une stratégie de balayage (backtracking chronologique, par ex.) ou utiliser une méthode d’optimisation en variables discrètes (algorithme génétique ou autre).
Cependant, la solution la plus simple consiste à limiter la taille de la base de mécanismes. Le concep-
teur peut décider, par exemple, de porter ses efforts uniquement sur tel le ou telle catégorie de mécanismes (à liens flexibles, à engrenages, etc.) et donc de n’utiliser qu’une base de mécanismes volontairement réduite. Pour
notre exemple sur les en grenages, $N_{REM} = 18$ et $N_{p} = 5$, ce qui donne seulement 2000718 combinaisons de mécanismes, valeur encore raisonnable.

- Justesse: toutes les solutions proposées doivent vérifier l’intégralité du cahier des charges fourni en entrée (Phase 2). Cette phase permet donc d’éliminer les mécanismes qui, à coup sûr, ne seront jamais solution pour l’une des raisons suivantes:
  - Orientation des arbres impossible à respecter. Avec deux engrenages coniques, on peut obtenir toutes les positions des arbres possibles (Fig. 6 (a)(b)(c)). Dans le cas plus général à deux étages d’angle $\alpha_1$ et $\alpha_2$, la relation $\alpha_1 - \alpha_2 \leq \frac{\alpha}{\pi} \leq \alpha_1 + \alpha_2$ doit être vérifiée (Fig. 6(d)).
  - Rendement minimum insuffisant: on suppose le mécanisme $M_1$ si $n_{E_1} < n_{E_2}$.
  - Sens de rotation connu et incorrect.
  - Plus d’un étage inver seur: en effet, il est parfois inutile de cumuler plusieurs dispositifs invers eurs. Une telle solution peut être viable du point de vue du strict respect du rendement minimal mais ne va pas dans le sens de la simplicité, de l’écono mie et du meilleur rendement. Elle sera donc délibérément abandonnée.

- Clarté: les solutions sont classées afin de dégager les «meilleures» selon plusieurs critères (Phase 3). Les solutions comportant le moins d’étages se retrouvent évidemment dans les premières places. Les ex-aequo sont départagés par la moyenne pondérée des coefficients des étages de chaque solution.
  - Flexibilité: l’utilisateur doit pouvoir agir sur les critères de classement en définissant ce qui est «bon» pour lui et ce qui ne lui convient pas. Il a toute latitude à la fois sur les valeurs stockées dans la base de mécanismes et sur les pondérations des coefficients caractéristiques de chaque mécanisme élémentaire.

C - Exemple

La méthode permet de générer un réducteur de 5 étages plus, avec des arbres à 45°, un rendement de 90%, un rapport de réduction de 500 et un sens de rotation positif. Après un calcul de 3 secondes environ (sur Pentium Pro 233 MHz), une liste de 423 solutions valides est proposée (sur plus de 2 millions de solutions testées), dont 7 solutions à trois étages et 192 à quatre étages. La figure 7 représente les modèles 3D correspondant à trois des meilleurs solutions. Les solutions (a) et (b) utilisent deux étages un étage épi cycloïdal de type II, ce qui leur permet de se contenter de trois étages, au lieu de quatre pour la solution (c). Dans tous les cas, un ou deux engrenages coniques assurent la position angulaire de 45°. Notons que, si les angles sont corrects, les dimensions sont encore arbitraires.

III - Etape dimensionnelle: pré-calcu l par la méthode du squelette

A - Notion de squelette

Nous introduisons la notion de squelette de mécanisme. Il s’agit en fait d’un modèle simplifié de mécanisme consistant à le réduire aux arbres de transmission et à leur entraxe, le délestant de toutes les autres pièces et formes complexes. Avec un tel modèle, on peut donc pas construire le moindre mécanisme réel, puisqu’il lui manque la «chair», c’est-à-dire l’épaisseur radiale autour des axes et les formes réalistes. Le concept de squelette est néanmoins tout à fait intéressant, comme nous allons le voir, et ses avantages sont multiples:
  - Il permet de montrer de façon synthétique la disposition optimale des étages dans l’espace d’un point de vue purement géométrique.
  - Il constitue une condition nécessaire d’existence du mécanisme. Si on arrive à trouver une disposition optimale du squelette, il est inutile d’espérer pouvoir construire un véritable mécanisme. Inversement, ce n’est pas parce qu’on a réussi à construire un squelette admissible qu’on pourra construire un mécanisme admissible. En effet, ce dernier doit vérifier de très nombreuses contraintes supplémentaires d’ordre technologique. L’existence d’un squelette valide est donc une condition nécessaire mais non suffisante à l’existence d’une solution définitive valide.
  - Les dimensions optima les du squelette fournissent un point de départ avantageux pour le problème d’optimisation de l’étage 3. Du fait du grand nombre de variables et de contraintes qu’il comporte, on a tout interêt à ne pas démarrer trop loin du point optimal. Là encore, le pré-calcu l du squelette apporte une réponse satisfaisante.

Nous présentons figure 8 quelques mécanismes courants susceptibles de constituer un étage de réducteur avec, à droite de la flèche, ce que nous appelons le squelette de l’étage. Les dimensions inconnues, représentées par des cotes, sont supposées toutes positives. Les autres dimensions (diamètres de roues et d’arbres par exemple) sont négligées à ce stade. Passons maintenant au squelette d’un réducteur multi-étages. Pour définir la géométrie du réducteur, il faut fixer non seulement la géométrie de chaque étage (deux variables en général, une longueur d’arbre et une longueur d’entraxe) mais aussi la position relative des étages. Par définition, chaque étage est relié au précédent par un arbre de transmission (cf. Fig. 1 (b)). La position relative d’un étage $i-1$ par rapport à un étage $i$ introduit donc deux paramètres:
  - Longueur de l’arbre intermédiaire (incluse dans la longueur de l’arbre d’entrée de l’étage $i+1$)
- Position angulaire de l'étage \( i+1 \) par rapport à l'étage \( i \) autour de l'arbre de transmission.

Ainsi nous pouvons définir la position relative des \( N_{E_i} \) étages en introduisant \( N_{E_i} \) paramètres angulaires supplémentaires. Nous obtenons alors le squelette du réducteur qui est une structure filaire dans l'espace, paramétrée par des longueurs et des angles. Pour un réducteur constitué de deux étages roue-vis suivis d'un engrenage cylindrique, on a le squelette de la figure 9.

**B - Le problème d'optimisation**

Le problème consiste à trouver les valeurs inconnues \( L_i, \alpha_i \) et \( \theta \) de telle sorte que l'arbre de sortie passe bien par le point \( O \), avec la direction \( Z_s \) (contraintes de fermeture). Dans la plupart des cas, il y a plus d'inconnues que d'équations et le problème devient un problème d'optimisation. La fonction objectif à minimiser sera la longueur totale du squelette. Cela revient à essayer de trouver le chemin le plus direct pour passer de \( O_1 \) à \( O_N \). De plus, en minimisant les longueurs d'arbres et les entraxes, on minimise indirectement le volume de matière. Enfin, on adjoint au problème des contraintes supplémentaires imposant que le squelette tienne tout entier dans l'enveloppe.

Si on récapitule, on obtient le problème suivant:

Minimiser

\[
F(L_i, \alpha_i, \theta) = \sum (L_i + a_i)
\]

pour \( i = 1 \ldots N_{E_i} \)

avec les contraintes égalités

\[
O_s = O_s, \quad Z_s = Z_s
\]

- Fig. 6 - Deux étages aux arbres non parallèles permettent d'obtenir un réducteur d'angle donné.

- Fig. 7 - Trois des 423 solutions proposées par l'algorithme.

- Fig. 8 - Squelettes correspondant à quatre engrenages de la base de mécanismes élémentaires.

- Fig. 9 - Squelette d'un réducteur à trois étages (roue-vis roue-vis engrenage cylindrique).
et les contraintes inégalités
\[ X_n < X_0 < X_M \]
\[ Y_n < Y_0 < Y_M \]
\[ Z_n < Z_0 < Z_M \]
Nous ne nous étendrons pas plus sur la formulation, déjà présentée dans (5).

C - Exemples

Exemple 1. Nous reprendrons l'exemple de réducteur à trois étages du paragraphe A. Le modèle 3D correspondant est représenté Fig. 10 (a). Le cahier des charges est le suivant:
- Dimension de l'enveloppe:
  \[ X_r = X_m = Z_m = 100 \]
  \[ X_m = Y_m = Z_m = 1100 \]
- Position des arbres d'E/S:
  \[ O_x = (600, 600, 100) \]
  \[ O_y = (900, 900, 900) \]
- Orientation des arbres d'E/S
  \[ \vec{Z} = (0, 0, 1) \]
  \[ \vec{Z} = (1/\sqrt{3}, 1/\sqrt{3}, 1/\sqrt{3}) \]
Variables de longueur prises dans l'intervalle (100, \( L_{Max} \)) avec \( L_{Max} \), diagonale de l'enveloppe.
On part de la position initiale représentée figure 10(b), prise volontairement très loin de l'optimum afin de tester l'algorithme. La représentation du squelette est filaire. Les angles droits imposés sont matérialisés par des carrés. Les longueurs des segments correspondent aux variables de longueur. Les petits cercles autour d'un segment indiquent une rotation possible selon l'axe du segment, ce qui correspond à une variable angulaire.
Dans un premier temps, on calcule des valeurs vérifiant l'équation de fermeture. La durée est de l'ordre de la seconde sur un Pentium Pro 233 MHz sous Linux. La figure 10(b) donne la forme du squelette résultant et la valeur de \( F \).

La phase suivante permet d'obtenir un squelette compacté en moins d'une seconde (Fig. 11(a) et 11(b)). La fonction objectif à bien diminué: \( F=1301 \). Cette baisse substantielle a été obtenue notamment en augmentant la longueur de l'arbre diagonal \( O_xO_y \) au détriment de l'arbre vertical \( O_xO_z \) et de l'entraîne horizontal \( O_xO_y \).
Suivant les valeurs initiales, le calcul peut converger vers un optimum local, correspondant à une disposition différente mais moins optimale des étages (Fig. 11(c)).

Exemple 2. Il s'agit cette fois de tester un «anagramme» de l'ex. 1, c'est-à-dire un réducteur comportant...
Les mêmes étages dans un ordre différent (Fig. 12a). L'étape 1 ne permet pas de préciser avec certitude de l'ordre idéal des étages et nous cherchons des indices pour aider le concepteur dans son choix. Si on lance le calcul avec diverses conditions initiales, on constate que le programme s'interrompt systématiquement sans avoir pu trouver de solution satisfaisante. Un rapide examen du squelette 3D éclaircit facilement la question : il ne s'agit pas d'un simple problème numérique de convergence mais bien et bien d'une impossibilité fondamentale spécifique à l'ex. 2, qui s'avère incapable de satisfaire simultanément aux contraintes d'orientation et de position de l'arbre de sortie (Fig. 12b) et 12c).

L'exemple 1 met en évidence l'excellente aptitude du programme à déterminer des dispositions d'encombrement minimum pour les mécanismes construits topologiquement à l'étape 1. Avec l'exemple 2, nous démontrons l'intérêt du concept de squelette pour éliminer rapidement des mécanismes incapables de respecter la condition de fermeture du cahier des charges. On voit de plus que l'étape dimensionnelle 2 complète efficacement l'étape topologique 1 pour aider le concepteur dans le choix délicat de l'ordre des étages d'un réducteur.

**Conclusion et perspectives**

Nous avons montré comment la conception d'un mécanisme impliquait deux types différents de processus, successivement topologiques et dimensionnels. Les étapes topologiques, en proposant des architectures possibles grâce à des techniques du type IA, constituèrent le point d'ancrage indispensable aux phases de calcul dimensionnel, qui font plus ou moins intervenir des méthodes numériques. Cette démarche nous a permis, pour la classe des mécanismes réducteurs à engrenages, de créer un outil d'aide au concepteur, basé sur la collaboration étroite entre des modules de calcul et un logiciel de CAO. Nous avons présenté les deux premières étapes de la démarche, qui correspondent aux préliminaires de la conception, trop peu souvent traités par des logiciels d'assistance CAO. Avec cet outil, nous estimons pouvoir fournir au concepteur une boîte «machine de donner des idées».

Enfin, comme les étapes 1 et 2 ne peuvent suffire pour définir un mécanisme de transmission de façon complète et détaillée, nous travaillons actuellement sur les étapes suivantes (calcul des diamètres de roues, d'arbres, des roulements, etc.).


**Références**


---

**COMPACT et TRES PRECIS**

**YASKAWA EST DEVENU AUJOURD'HUI LE PREMIER CONSTRUCTEUR MONDIAL de VARIATEURS DE FREQUENCE et de SYSTEMES BRUSHLESS.**

NOS PRODUITS DOIVENT ETRE TOUJOURS PLUS PERFORMANTS. POUR CELA, ILS ALLIENT UNE TECHNOLOGIE ET UNE FIABILITE QUI DEMEURENT INEAGLEES.

**VARIATEURS de 0,1 à 1 200 kW**
- Nouveau V7 : micro-variateur vectoriel.

**BRUSHLESS de 7 Watts à 45 kW**
- Nouveau Sigma 2 : le brushless "Plug & Play".

---

**YASKAWA Energy in Motion**

- Tél : 01 39 31 20 85
- Fax : 01 39 31 22 65

Email yaskawa-mcd@worldnet.fr - Web http://www.yaskawa.com

Cerclez code n°506 sur carte infos page courrier-lecteurs

---

Entraînements & Systèmes - N°4 - MAI/JUIN 1999